1.onnxruntime推理
推理部分C++版本麻烦很多,使用的onnxruntime1.9.0-gpu版本
1.1 python版本
image = cv2_imread(image_dir + file) image = image[:, :, ::-1] #BGR2RGB bbox = [35.75518 , 220.21573 , 227.99582 , 463.20563 , 0.8576229] #bbox = [111.28296, 98.003784, 288.46533, 342.31738, 0.8576229] crop_img, crop_M = _crop_image(image, bbox, 1.5)
providers = ['CUDAExecutionProvider'] # providers = ['CPUExecutionProvider'] img_size = (height, width)modelname = r"1001.onnx" ort_session = onnxruntime.InferenceSession(modelname, providers=providers) #
crop_img = crop_img.transpose((2, 0, 1))[np.newaxis, ...] image = np.asarray(crop_img, dtype=np.float32) ort_inputs = {ort_session.get_inputs()[0].name: image} output = ort_session.run(None, ort_inputs) print(output)
1.2 C++版本
#include <iostream>
#include <opencv2/opencv.hpp>
#include <onnxruntime_cxx_api.h>
#include <vector>
#include <cmath>
#include <filesystem>
string modelpath = "./models/1001.onnx";
std::wstring widestr = std::wstring(modelpath.begin(), modelpath.end());
Ort::Env env_regress = Env(ORT_LOGGING_LEVEL_ERROR, "face_3dkps");
Ort::Session* ort_session_regress = nullptr;
SessionOptions sessionOptions_regress = SessionOptions();
vector<char*> input_names;
vector<char*> output_names;
vector<vector<int64_t>> input_node_dims; // >=1 outputs
vector<vector<int64_t>> output_node_dims; // >=1 outputs
Mat image = cv2_imread("1.jpg");
cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
vector<float> bbox;
//1.jpg
bbox.push_back(35.75518);
bbox.push_back(220.21573);
bbox.push_back(227.99582);
bbox.push_back(463.20563);
//111111.jpg
//111.28296, 98.003784, 288.46533, 342.31738, 0.8576229
/* bbox.push_back(111.28296);
bbox.push_back(98.003784);
bbox.push_back(288.46533);
bbox.push_back(342.31738);*/
// Example bbox, adjust as needed
cv::Mat M;
Mat crop_img = crop_image(image, bbox, 1.5f, M);
sessionOptions_regress.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
ort_session_regress = new Session(env_regress, widestr.c_str(), sessionOptions_regress);
size_t numInputNodes = ort_session_regress->GetInputCount();
size_t numOutputNodes = ort_session_regress->GetOutputCount();
AllocatorWithDefaultOptions allocator;
for (int i = 0; i < numInputNodes; i++)
{
input_names.push_back(ort_session_regress->GetInputName(i, allocator));
//input_names.push_back(ort_session->GetInputName(i, allocator));
Ort::TypeInfo input_type_info = ort_session_regress->GetInputTypeInfo(i);
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
auto input_dims = input_tensor_info.GetShape();
input_node_dims.push_back(input_dims);
}
for (int i = 0; i < numOutputNodes; i++)
{
output_names.push_back(ort_session_regress->GetOutputName(i, allocator));
//output_names.push_back(ort_session->GetOutputName(i, allocator));
Ort::TypeInfo output_type_info = ort_session_regress->GetOutputTypeInfo(i);
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
auto output_dims = output_tensor_info.GetShape();
output_node_dims.push_back(output_dims);
}
int inpHeight = input_node_dims[0][2];
int inpWidth = input_node_dims[0][3];
int nout = output_node_dims[0][2];
array<int64_t, 4> input_shape_{ 1, 3,inpHeight, inpWidth };
std::vector<float> input_image_;