R语言fastshap包进行支持向量机shap可视化分析

1995年VAPINK 等人在统计学习理论的基础上提出了一种模式识别的新方法—支持向量机 。它根据有限的样本信息在模型的复杂性和学习能力之间寻求一种最佳折衷。 以期获得最好的泛化能力.支持向量机的理论基础决定了它最终求得的是全局最优值而不是局部极小值,从而也保证了它对未知样本的良好泛化能力。
支持向量机的理论最初来自对两类数据分类问题的处理。SV M 考虑寻找一个超平面, 以使训练集中属于不同分类的点正好位于超平面的不同侧面, 并且,还要使这些点距离该超平面尽可能远。 即寻找一个超平面, 使其两侧的空白区域最大

在这里插入图片描述
既往我们在文章《R语言手把手教你进行支持向量机分析》中介绍了e1071包进行支持向量机分析。今天咱们来介绍一下fastshap包进行支持向量机shap可视化分析,
先导入数据

library(e1071)
library(caret)
bc<-read.csv("E:/r/test/demo.csv",sep=',',header=TRUE)
bc <- na.omit(bc)

在这里插入图片描述
数据变量很多,我解释几个我等下要用的,HBP:是否发生高血压,结局指标,AGE:年龄,是我们的协变量,BMI肥胖指数,FEV1肺活量指标,WEIGHT体重,“SBP”,“DBP”:收缩压和舒张压。公众号回复:体检数据,可以获得数据。
有些变量用不到,我先精简一下,把结局变量变成因子,这个很重要。

bc<-bc[,c("HBP","BMI","AGE","FEV1","WEIGHT","SBP","DBP","SEX")]
bc$HBP<-as.factor(bc$HBP)
bc$SEX<-as.factor(bc$SEX)

接下来就是对数据进行标准化,这样可以消除数据见的差异。
定义一个标准化的小程序

f1<-function(x){return((x-min(x)) / (max(x)-min(x)))
}
bc.scale<-as.data.frame(lapply(bc[2:7],f1))
bc.scale<-cbind(HBP=bc$HBP,SEX=bc$SEX,bc.scale)

#分成建模和验证组

set.seed(12345)
tr1<- sample(nrow(bc.scale),0.7*nrow(bc.scale))##随机无放抽取
bc_train <- bc.scale[tr1,]#70%数据集
bc_test<- bc.scale[-tr1,]#30%数据集

接下来咱们要生成一个支持向量机的模型,这里我就直接上代码了,想具体了解的直接可以看上面的文章。

############生成模型
svm  <- svm(HBP~.,data=bc.scale, probability = TRUE)

接下来咱们导入fastshap包和辅助包fastshap包可以做全局解释和辅助解释,其实就是全部数据和部分数据或者单个数据。我这里只做全局解释,

library(magrittr)
library(tidyverse)
library(fastshap)
library(shapviz)

使用fastshap包可以做很多模型的shap,做shap可视化的关键就是要定义一个生成预测值概率的函数,

pred_wrapper <- function(model,newdata){newdata$def_pred<-predict(model, newdata=newdata,probability = TRUE)Pred_Prob <- attr(newdata$def_pred, "probabilities")def_pred<-as.data.frame(Pred_Prob)newdata$prob1<-def_pred[,2]newdata$prob1
}

其实就是一个放入模型生成预测值的简单函数,然后咱们还要生成一个没有结局变量的数据矩阵

x<-bc_train[,-1]

生成以后就是用fastshap包的explain函数来进行计算shap就可以了,使用的是蒙特卡罗算法。Nsim就是蒙特卡罗算法的次数,作者说尽量多点比较好

shap <- explain(svm, X = x, pred_wrapper = pred_wrapper, nsim = 10, adjust = TRUE,shap_only = FALSE)

生成以后就用shapviz包来可视化就行

shv.global <- shapviz(shap)
sv_importance(shv.global)

在这里插入图片描述
也可以做一些变量的相关依赖性分析

sv_dependence(shv.global, v = "AGE")

在这里插入图片描述

sv_dependence(shap.global, v = "SEX")

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/39671.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[数据集][目标检测]围栏破损检测数据集VOC+YOLO格式1196张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;1196 标注数量(xml文件个数)&#xff1a;1196 标注数量(txt文件个数)&#xff1a;1196 标注…

40V转5V,40V转3.3V,40V转3V使用什么降压芯片型号?

40V转5V,40V转3.3V,40V转3V使用什么降压芯片型号? # 40V转5V、3.3V、3V降压芯片&#xff1a;AH8820A的介绍与应用 在电子电路设计中&#xff0c;电压转换是一个常见的需求。特别是在需要将较高电压转换为较低电压以供微控制器、传感器和其他低电压设备使用时&#xff0c;降压…

力扣1685.有序数组中差绝对值之和

力扣1685.有序数组中差绝对值之和 记录左边之和 和 右边之和从左到右遍历每个元素 求res class Solution {public:vector<int> getSumAbsoluteDifferences(vector<int>& nums) {int n nums.size(),lsum 0,rsum accumulate(nums.begin(),nums.end(),0);ve…

匿名方法与Lambda表达式

知识集锦 一、lambda表达式介绍 无参数 () >{return "1";}; 等同于 string getnum(){ return "1"; } 有两个参数 (p1, p2) >{ return p1*p2;}; 等同于 int mul(p1, p2) { return p1*p2;}; lambda表达式可以捕获外部变量&#xff0c;并在其主体中使用…

怎么在电脑上录屏?跟着教程一步步操作

随着数字化时代的到来&#xff0c;电脑录屏已经成为一项必备技能。无论是录制游戏画面、制作教程视频&#xff0c;还是保存线上会议记录&#xff0c;录屏都能帮上大忙。可是怎么在电脑上录屏呢&#xff1f;本文将介绍两种在电脑上进行录屏的方法&#xff0c;这两种方法各有特点…

陶建辉当选 GDOS 全球数据库及开源峰会荣誉顾问

近日&#xff0c;第二十三届 GOPS 全球运维大会暨 XOps 技术创新峰会在北京正式召开。本次会议重点议题方向包括开源数据库落地思考、金融数据库自主可控、云原生时代下数据库、数据库智能运维、数据库安全与隐私、开源数据库与治理。大会深入探讨这些方向&#xff0c;促进了数…

宇宙第一大厂亚马逊云科技AWS人工智能/机器学习证书即将上线,一篇文章教你轻松拿下

据麦肯锡《在华企业如何填补AI人才缺口》研究表明&#xff0c;到2030年人工智能为中国带来的潜在价值有望超过1万亿美元&#xff0c;而随着各大企业进入人工智能化&#xff0c;对该领域的人才需求将从目前的100万增长到2030年的600万。然而到保守估计&#xff0c;到2030可以满足…

DevOps:开发与运维的无缝融合

目录 前言1. DevOps的起源与概念1.1 DevOps的起源1.2 DevOps的定义 2. DevOps的核心实践2.1 持续集成2.2 持续交付2.3 自动化 3. DevOps工具链3.1 版本控制系统3.2 持续集成工具3.3 配置管理工具3.4 容器化与编排工具3.5 监控和日志工具 4. DevOps的实际应用4.1 案例分析&#…

C语言实战 | 用户管理系统

近期推出的青少年防沉迷系统&#xff0c;采用统一运行模式和功能标准。在“青少年模式”下&#xff0c;未成年人的上网时段、时长、功能和浏览内容等方面都有明确的规范。防沉迷系统为青少年打开可控的网络空间。 01、综合案例 防沉迷系统的基础是需要一个用户管理系统管理用户…

C# 计算椭圆上任意一点坐标

已知圆心坐标 &#xff08;x0&#xff0c;y0&#xff09;&#xff0c;横轴 A&#xff08;长半轴&#xff09;&#xff0c;竖轴 B&#xff08;短半轴&#xff09;&#xff0c;角度 a&#xff0c;则圆边上点&#xff08;x&#xff0c;y&#xff09;的坐标为&#xff1a; 方法一 …

docker push 推送镜像到阿里云仓库

1.登陆阿里云 镜像服务&#xff0c;跟着指引操作就行 创建个人实例&#xff0c;创建命名空间、镜像仓库&#xff0c;绑定代码源头 2.将镜像推送到Registry $ docker login --username*** registry.cn-beijing.aliyuncs.com $ docker tag [ImageId] registry.cn-beijing.aliy…

Vue入门-如何创建一个Vue实例

创建一个一个Vue实例总共分为四步&#xff1a; 1.创建一个容器 2.引包&#xff1a;地址栏搜索v2.cn.vuejs.org这是vue2的官网地址&#xff0c;把2去掉就是vue3的官网地址&#xff0c;我们的包分为开发版本和生产版本&#xff0c;开发版本包含完整的警告和调试模式生产版本删除…

太阳辐射系统日光全光谱模拟太阳光模拟器

太阳光模拟器是一种用于评估太阳能电池性能的重要设备。它能够模拟太阳光的特性&#xff0c;通过测试电池的短路电流、开路电压、填充因子和光电转化效率等关键指标&#xff0c;来评估电池的性能优劣。 设备型号&#xff1a;KYF-GC004品牌制造商&#xff1a;科迎法电气太阳光模…

UE5基本操作(二)

文章目录 前言相机的移动速度修改默认地图使用初学者内容包文件夹结构 总结 前言 在我们的上一篇文章中&#xff0c;我们已经介绍了一些Unreal Engine 5&#xff08;UE5&#xff09;的基本操作。UE5是一款强大的游戏开发引擎&#xff0c;它提供了许多工具和功能&#xff0c;使…

蓝牙压力测试和稳定性测试工具(nRF Connect)

蓝牙压力测试和稳定性测试工具&#xff08;nRF Connect&#xff09; 文章目录 1、如何使用nRF Connect事件记录功能2、如何使用nRF Connect录制操作2.1、点击右下角的开始录制2.2、输入想要测试的指令2.3、模拟持续数据访问2.4、开始压力测试 1、如何使用nRF Connect事件记录功…

【python】OpenCV—QR Code

文章目录 1 QR Code2 准备工作3 生成 QR 码4 读取 QR 码5 与 Zbar 比较 1 QR Code QR Code&#xff08;Quick Response Code&#xff09;是一种二维条码&#xff0c;由日本Denso-Wave公司于1994年发明。QR Code的主要特点是存储信息量大、编码范围广、容错能力强、识读速度快&…

基于PI控制的三相整流器控制系统的simulink建模与仿真,包含超级电容充电和电机

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于PI控制的三相整流器控制系统的simulink建模与仿真,用MATLAB自带的PMSM电机设为发电机&#xff0c;输入为转速&#xff0c;后面接一个可以调节电流的三相整流器&#xff0c…

three.js地理坐标系有哪些,和屏幕坐标系的转换。

坐标系很好理解&#xff0c;就是点线面体的位置&#xff0c;一个点是一个坐标&#xff0c;一条线段2个坐标&#xff0c;一个矩形四个坐标&#xff0c;一个立方体8个坐标&#xff0c;three.js面对的是三维空间&#xff0c;屏幕则是二维的&#xff0c;这就面临着转换问题&#xf…

数字化精益生产系统--SRM供应商关系管理

SRM供应商关系管理&#xff0c;全称为Supplier Relationship Management&#xff08;供应商关系管理&#xff09;系统&#xff0c;是一种专门用于管理采购供应链和供应商关系的软件系统。该系统通过集成各个环节的采购活动&#xff0c;帮助企业实现采购流程的自动化、标准化和优…

hive的表操作

常用的hive命令 切换数据库use test;查询表的建表信息show create table 数据库名称.表名;查看表的类型信息desc formatted 数据库名称.表名; 删除内部表 drop table 数据库名称.表名; 先启动hdfs &#xff0c;mysql &#xff0c; hiveservice2&#xff0c;beeline CREATE [EX…