[信号与系统]IIR滤波器与FIR滤波器相位延迟定量的分析。

IIR滤波器与FIR滤波器最大的不同:相位延迟

IIR滤波器相位延迟分析

相位响应和延迟

这里讨论一下理想延迟系统的相位延迟。

对于一个给定的系统频率响应 H ( e j w ) H(e^{jw}) H(ejw)可以表示为

H ( e j w ) = ∣ H ( e j w ) ∣ e Φ ( w ) H(e^{jw}) = |H(e^{jw})|e^{Φ(w)} H(ejw)=H(ejw)eΦ(w)

其中 H ( e j w ) H(e^{jw}) H(ejw)是幅度响应, Φ ( w ) Φ(w) Φ(w)是相位响应。

延迟系统的相位响应

对于一个理想的延迟系统,其输出信号是输入信号的延迟版本,即:

y ( n ) = x ( n − τ ) y(n) = x(n-\tau) y(n)=x(nτ)

其中 τ \tau τ是延迟时间,对应的频率响应为 H ( e j w ) = e − j w τ H(e^{jw})=e^{-jw\tau} H(ejw)=ejwτ
这是因为延迟 τ \tau τ样本在时域上相当于在频域上乘以 e − j w τ e^{-jw\tau} ejwτ

傅里叶变换和频域描述

为了理解延迟系统的频率响应,需要用到离散时间傅里叶变换(DTFT)。DTFT将时域信号转换为频域信号。

  • 输入信号 x ( n ) x(n) x(n)的DTFT为:

X ( e j w ) = ∑ n = − ∞ ∞ x ( n ) e − j w n X(e^{jw}) = \sum_{n=-\infty}^{\infty} x(n) e^{-jwn} X(ejw)=n=x(n)ejwn

  • 输出信号 y ( n ) y(n) y(n)的DTFT为:

Y ( e j w ) = ∑ n = − ∞ ∞ y ( n ) e − j w n Y(e^{jw}) = \sum_{n=-\infty}^{\infty} y(n) e^{-jwn} Y(ejw)=n=y(n)ejwn

延迟的影响

根据延迟系统的定义:

y ( n ) = x ( n − τ ) y(n) = x(n - \tau) y(n)=x(nτ)

将这个关系代入到 y ( n ) y(n) y(n)的DTFT公式中:

Y ( e j w ) = ∑ n = − ∞ ∞ x ( n − τ ) e − j w n Y(e^{jw}) = \sum_{n=-\infty}^{\infty} x(n - \tau) e^{-jwn} Y(ejw)=n=x(nτ)ejwn

可以通过变量替换来简化计算。令 k = n − τ k = n - \tau k=nτ,则 n = k + τ n = k + \tau n=k+τ

Y ( e j w ) = ∑ k = − ∞ ∞ x ( k ) e − j w ( k + τ ) Y(e^{jw}) = \sum_{k=-\infty}^{\infty} x(k) e^{-jw(k + \tau)} Y(ejw)=k=x(k)ejw(k+τ)

分离指数部分:

Y ( e j w ) = ∑ k = − ∞ ∞ x ( k ) e − j w k e − j w τ Y(e^{jw}) = \sum_{k=-\infty}^{\infty} x(k) e^{-jwk} e^{-jw\tau} Y(ejw)=k=x(k)ejwkejwτ

注意到:

∑ k = − ∞ ∞ x ( k ) e − j w k = X ( e j w ) \sum_{k=-\infty}^{\infty} x(k) e^{-jwk} = X(e^{jw}) k=x(k)ejwk=X(ejw)

所以:

Y ( e j w ) = X ( e j w ) ⋅ e − j w τ Y(e^{jw}) = X(e^{jw}) \cdot e^{-jw\tau} Y(ejw)=X(ejw)ejwτ

频率响应

系统的频率响应 H ( e j w ) H(e^{jw}) H(ejw)定义为输出频域表示与输入频域表示的比值:

H ( e j w ) = Y ( e j w ) X ( e j w ) H(e^{jw}) = \frac{Y(e^{jw})}{X(e^{jw})} H(ejw)=X(ejw)Y(ejw)

将上面的结果代入:

H ( e j w ) = e − j w τ H(e^{jw}) = e^{-jw\tau} H(ejw)=ejwτ

相位响应的推导

我们可以从延迟系统的频率响应H(e^jw)推导出其相位响应:

H ( e j w ) = e − j w τ H(e^{jw})=e^{-jw\tau} H(ejw)=ejwτ

从上述式子可以看到,频率响应的相位部分为 Φ ( w ) = − w τ Φ(w)=-w\tau Φ(w)=wτ


至此我们知道了系统的延迟是如何表达和推导的,那么我们现在来说一下为什么IIR滤波器和FIR滤波器在相位延迟上会有这么大差别。

IIR滤波器相位延迟分析

考虑一个IIR滤波器的频率响应函数,应当如下:

一般来说,一个IIR滤波器的输出可以表示为:

y ( n ) = ∑ k = 0 N b k x ( n − k ) − ∑ k = 1 M a k y ( n − k ) y(n) = \sum_{k=0}^{N} b_k x(n-k) - \sum_{k=1}^{M} a_k y(n-k) y(n)=k=0Nbkx(nk)k=1Maky(nk)

其中, b k b_k bk a k a_k ak是滤波器的系数。

IIR滤波器的频率响应 H ( e j ω ) H(e^{j\omega}) H(e)通常表示为:

H ( e j ω ) = B ( e j ω ) A ( e j ω ) H(e^{j\omega}) = \frac{B(e^{j\omega})}{A(e^{j\omega})} H(e)=A(e)B(e)

其中, B ( e j ω ) B(e^{j\omega}) B(e) A ( e j ω ) A(e^{j\omega}) A(e)分别是分子和分母多项式:

B ( e j ω ) = ∑ k = 0 N b k e − j ω k B(e^{j\omega}) = \sum_{k=0}^{N} b_k e^{-j\omega k} B(e)=k=0Nbkejωk
A ( e j ω ) = 1 + ∑ k = 1 M a k e − j ω k A(e^{j\omega}) = 1 + \sum_{k=1}^{M} a_k e^{-j\omega k} A(e)=1+k=1Makejωk

相位响应 ϕ ( ω ) \phi(\omega) ϕ(ω)是频率响应的相位部分:

H ( e j ω ) = ∣ H ( e j ω ) ∣ e j ϕ ( ω ) H(e^{j\omega}) = |H(e^{j\omega})| e^{j\phi(\omega)} H(e)=H(e)ejϕ(ω)
ϕ ( ω ) = arg ⁡ ( H ( e j ω ) ) \phi(\omega) = \arg(H(e^{j\omega})) ϕ(ω)=arg(H(e))

为了定量地分析IIR滤波器的延迟,我们需要计算相位响应的频率导数,即群延迟 τ g ( ω ) \tau_g(\omega) τg(ω)

τ g ( ω ) = − d ϕ ( ω ) d ω \tau_g(\omega) = -\frac{d\phi(\omega)}{d\omega} τg(ω)=dωdϕ(ω)

由于IIR滤波器的相位响应不是线性的,所以其群延迟通常是频率的函数,即延迟是频率依赖的。

定量推导(纯数学计算)

我们以一个简单的一阶IIR滤波器为例,分析其延迟特性。考虑一个一阶IIR滤波器,其差分方程为:

y ( n ) = x ( n ) − a y ( n − 1 ) y(n) = x(n) - a y(n-1) y(n)=x(n)ay(n1)

其频率响应为:

H ( e j ω ) = 1 1 − a e − j ω H(e^{j\omega}) = \frac{1}{1 - a e^{-j\omega}} H(e)=1ae1

  1. 计算频率响应的相位

H ( e j ω ) = 1 1 − a e − j ω H(e^{j\omega}) = \frac{1}{1 - a e^{-j\omega}} H(e)=1ae1

我们将其写成极坐标形式:

H ( e j ω ) = 1 1 − 2 a cos ⁡ ( ω ) + a 2 e j ϕ ( ω ) H(e^{j\omega}) = \frac{1}{\sqrt{1 - 2a\cos(\omega) + a^2}} e^{j\phi(\omega)} H(e)=12acos(ω)+a2 1ejϕ(ω)

其中,

ϕ ( ω ) = − tan ⁡ − 1 ( a sin ⁡ ( ω ) 1 − a cos ⁡ ( ω ) ) \phi(\omega) = -\tan^{-1}\left(\frac{a \sin(\omega)}{1 - a \cos(\omega)}\right) ϕ(ω)=tan1(1acos(ω)asin(ω))

  1. 计算群延迟

τ g ( ω ) = − d ϕ ( ω ) d ω \tau_g(\omega) = -\frac{d\phi(\omega)}{d\omega} τg(ω)=dωdϕ(ω)

ϕ ( ω ) = − tan ⁡ − 1 ( a sin ⁡ ( ω ) 1 − a cos ⁡ ( ω ) ) \phi(\omega) = -\tan^{-1}\left(\frac{a \sin(\omega)}{1 - a \cos(\omega)}\right) ϕ(ω)=tan1(1acos(ω)asin(ω))

利用导数链式法则,

τ g ( ω ) = − d d ω [ − tan ⁡ − 1 ( a sin ⁡ ( ω ) 1 − a cos ⁡ ( ω ) ) ] \tau_g(\omega) = -\frac{d}{d\omega} \left[-\tan^{-1}\left(\frac{a \sin(\omega)}{1 - a \cos(\omega)}\right)\right] τg(ω)=dωd[tan1(1acos(ω)asin(ω))]

计算导数:

τ g ( ω ) = a ( 1 − a cos ⁡ ( ω ) ) cos ⁡ ( ω ) + a 2 sin ⁡ 2 ( ω ) ( 1 − a cos ⁡ ( ω ) ) 2 + a 2 sin ⁡ 2 ( ω ) \tau_g(\omega) = \frac{a \left(1 - a \cos(\omega)\right)\cos(\omega) + a^2 \sin^2(\omega)}{\left(1 - a \cos(\omega)\right)^2 + a^2 \sin^2(\omega)} τg(ω)=(1acos(ω))2+a2sin2(ω)a(1acos(ω))cos(ω)+a2sin2(ω)

简化后得到:

τ g ( ω ) = a ( 1 − a cos ⁡ ( ω ) + a cos ⁡ 2 ( ω ) ) 1 − 2 a cos ⁡ ( ω ) + a 2 \tau_g(\omega) = \frac{a \left(1 - a \cos(\omega) + a \cos^2(\omega)\right)}{1 - 2a \cos(\omega) + a^2} τg(ω)=12acos(ω)+a2a(1acos(ω)+acos2(ω))

由于公式较为复杂,我们可以直接用数值方法计算和绘制IIR滤波器的群延迟特性。

举个例子

我们来搞个示例,这样好懂一点:

考虑一个简单的一阶滤波器

H ( e j w ) = 1 1 − a e − j w H(e^jw)=\frac{1}{1-ae^{-jw}} H(ejw)=1aejw1

其相位响应为:

ϕ ( w ) = − a r g ( 1 − a e − j w ) ϕ(w)=-arg(1-ae^{-jw}) ϕ(w)=arg(1aejw)

我们可以看到,这个相位响应显然是非线性的,会随着w的不停变化,其变化率也会发生变化,说着说导数的比值会随着w的变化而变化,这显然是我们不想要看到的结果。

FIR滤波器相位延迟分析

FIR滤波器的相位延迟推导

FIR(有限脉冲响应)滤波器的延迟特性通常是线性的,这源于其非递归结构和对称系数设计。下面我们详细推导FIR滤波器的相位延迟,并展示如何利用KaTeX进行Markdown文档的编写。

FIR滤波器的基本形式

一个FIR滤波器的输出可以表示为:

y ( n ) = ∑ k = 0 N b k x ( n − k ) y(n) = \sum_{k=0}^{N} b_k x(n-k) y(n)=k=0Nbkx(nk)

其中, b k b_k bk 是滤波器的系数, N N N 是滤波器的阶数。

频率响应和相位响应

FIR滤波器的频率响应 H ( e j ω ) H(e^{j\omega}) H(e) 可以表示为:

H ( e j ω ) = ∑ k = 0 N b k e − j ω k H(e^{j\omega}) = \sum_{k=0}^{N} b_k e^{-j\omega k} H(e)=k=0Nbkejωk

相位响应 ϕ ( ω ) \phi(\omega) ϕ(ω) 是频率响应的相位部分:

H ( e j ω ) = ∣ H ( e j ω ) ∣ e j ϕ ( ω ) H(e^{j\omega}) = |H(e^{j\omega})| e^{j\phi(\omega)} H(e)=H(e)ejϕ(ω)
ϕ ( ω ) = arg ⁡ ( H ( e j ω ) ) \phi(\omega) = \arg(H(e^{j\omega})) ϕ(ω)=arg(H(e))

线性相位的条件

为了实现线性相位,我们通常设计FIR滤波器的系数使其具有对称性或反对称性。对于一个长度为 N + 1 N+1 N+1 的对称FIR滤波器,其系数满足:

b k = b N − k b_k = b_{N-k} bk=bNk

对于反对称FIR滤波器,其系数满足:

b k = − b N − k b_k = -b_{N-k} bk=bNk

这两种对称性保证了滤波器的相位响应是线性的,即:

ϕ ( ω ) = − ω τ \phi(\omega) = -\omega \tau ϕ(ω)=ωτ

其中, τ \tau τ 是一个常数,表示恒定的群延迟。

定量推导

考虑一个对称的FIR滤波器,其冲激响应 h ( n ) h(n) h(n) 为:

h ( n ) = h ( N − 1 − n ) h(n) = h(N-1-n) h(n)=h(N1n)

其频率响应为:

H ( e j ω ) = ∑ k = 0 N − 1 h ( k ) e − j ω k H(e^{j\omega}) = \sum_{k=0}^{N-1} h(k) e^{-j\omega k} H(e)=k=0N1h(k)ejωk

由于 h ( n ) h(n) h(n) 的对称性,我们可以将其拆分并合并:

H ( e j ω ) = ∑ k = 0 ( N − 1 ) / 2 h ( k ) ( e − j ω k + e − j ω ( N − 1 − k ) ) H(e^{j\omega}) = \sum_{k=0}^{(N-1)/2} h(k) \left( e^{-j\omega k} + e^{-j\omega (N-1-k)} \right) H(e)=k=0(N1)/2h(k)(ejωk+e(N1k))

利用欧拉公式,我们有:

e − j ω ( N − 1 − k ) = e − j ω ( N − 1 ) e j ω k e^{-j\omega (N-1-k)} = e^{-j\omega (N-1)} e^{j\omega k} e(N1k)=e(N1)ejωk

合并后得到:

H ( e j ω ) = e − j ω ( N − 1 ) / 2 ∑ k = 0 ( N − 1 ) / 2 h ( k ) ( e − j ω ( k − ( N − 1 ) / 2 ) + e j ω ( k − ( N − 1 ) / 2 ) ) H(e^{j\omega}) = e^{-j\omega (N-1)/2} \sum_{k=0}^{(N-1)/2} h(k) \left( e^{-j\omega (k - (N-1)/2)} + e^{j\omega (k - (N-1)/2)} \right) H(e)=e(N1)/2k=0(N1)/2h(k)(e(k(N1)/2)+e(k(N1)/2))

这表明相位响应是线性的:

ϕ ( ω ) = − ω N − 1 2 \phi(\omega) = -\omega \frac{N-1}{2} ϕ(ω)=ω2N1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/39021.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【面试系列】SQL 高频面试题

欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏: ⭐️ 全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题. ⭐️ AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、…

iptable精讲

SNAT策略 SNAT策略的典型应用环境 局域网主机共享单个公网IP地址接入Internet SNAT策略的原理 源地址转换,Source Network Address Translantion 修改数据包的源地址 部署SNAT策略 1.准备二台最小化虚拟机修改主机名 主机名:gw 主机名&#xff1…

【Android面试八股文】为什么要用ContentProvider?它与SQL的实现上有什么区别

一、ContentProvider相比SQL的几个显著的区别和优势 ContentProvider是Android平台上的一个组件,主要用于在不同的应用程序之间共享数据,提供了一种标准化的接口来访问和操作数据。 它与直接使用SQL数据库有几个显著的区别和优势: 数据共享和访问控制: ContentProvider:…

嵌入式以太网硬件构成与MAC、PHY芯片功能介绍

一.以太网电路基本构成 1.总体介绍 对于上述三部分,并不一定都是独立的芯片,主要有以下几种情况: CPU内部集成了MAC和PHY,难度较高; CPU内部集成MAC,PHY采用独立芯片(主流方案); CPU不集成MAC和PHY&#…

招生报名系统教培招生小程序

招生报名系统:轻松实现教培招生新高度 🚀 招生报名系统,开启智慧教育新时代 在当今数字化快速发展的时代,教育行业也迎来了变革的浪潮。招生报名系统作为这一变革的先锋,为教育机构提供了全新的招生渠道和管理方式。通…

原型模式的实现

1. 引言 1.1 背景 在实际编程中,有时需要频繁创建多个相似但稍有不同的对象。如果采用传统的对象创建方式,容易造成代码冗余,对象重复初始化操作也可能带来大量的的资源消耗(如时间、内存等)。这样不仅降低了灵活性,导致难以适应状态的变化,还降低了代码的可扩展性。 …

挑战与成长:面对他人成就引发的焦虑与迷茫

挑战与成长:面对他人成就引发的焦虑与迷茫 对于追求知识和技能的人来说,看到他人做出自己尚未达到的成就确实会带来焦虑感。这种焦虑常常源于对自己能力的质疑和对未来的不确定性。 在我的学习和发展过程中,有时确实会看到其他模型或系统能…

实操Nginx+Tomcat多实例部署,实现负载均衡和动静分离

192.168.10.10 192.168.10.20 192.168.10.30 location ~ \.jsp$ {proxy_pass http://192.168.10.50:8080;} location ~ \.(jsp|html)$ {root /usr/share/nginx/html;}192.168.10.40和192.168.10.50用脚本完成搭建此处安装附上脚本: #!/bin/bash# 定义变量 JDK_PACKA…

等保测评——云计算安全扩展(云计算关键技术)

虚拟化技术: 虚拟化是云计算的核心技术之一,它为云计算服务提供基础架构层面的支撑,是ICT(信息通信技术)服务快速走向云计算的最主要驱动力。虚拟化作为云计算的重要组成部分,最大的好处是能增强系统的弹性和灵活性&a…

【微服务网关——Websocket代理】

1.Websocket协议与原理 1.1 连接建立协议 1.1.1 客户端发起连接请求 客户端通过 HTTP 请求发起 WebSocket 连接。以下是一个 WebSocket 握手请求的例子: GET /chat HTTP/1.1 Host: server.example.com Upgrade: websocket Connection: Upgrade Sec-WebSocket-Key…

题目:只通过+1和×2两种操作,最少几次能把0变成20240701?

偶然在网上看到了一个题目,看了看视频和评论,感觉挺有意思,记录一下。 只通过1和2两种操作,最少几次能把0变成20240701?_哔哩哔哩_bilibili 题目:只通过1和2两种操作,最少几次能把0变成202407…

Python面试宝典第3题:石子游戏

题目 Alice 和 Bob 用几堆石子在做游戏:一共有偶数堆石子,排成一行;每堆都有正整数颗石子,数目为 piles[i] 。游戏以谁手中的石子最多来决出胜负,石子的总数是奇数 ,所以没有平局。 Alice 和 Bob 轮流进行&…

CV01_相机成像原理与坐标系之间的转换

目录 0.引言:小孔成像->映射表达式 1. 相机自身的运动如何表征?->外参矩阵E 1.1 旋转 1.2 平移 2. 如何投影到“像平面”?->内参矩阵K 2.1 图像平面坐标转换为像素坐标系 3. 三维到二维的维度是如何丢失的?…

LVS-负载均衡

目录 一、概念 二、LVS工作原理 1. ipvs/ipvsadm 2.名词: 三、常用命令 四、工作模式 1.NAT地址转换模式 (1)工作流程 (2)特点 (3)实验过程 a.环境准备: b.修改测试机的…

UE5 动画蓝图

文章目录 一、State Machines二、Blend Spaces三、Aim Offset四、Montage 初步介绍 Unreal Engine 5 Tutorial - Animation Blueprint Part 1: State Machines (youtube.com) Unreal Engine 5 Tutorial - Animation Blueprint Part 2: Blend Spaces (youtube.com) Unreal Engi…

非静压模型SWASH学习(8)——三维孤立波在锥形岛屿上的爬坡过程(Runup of solitary waves on a conical island)

三维孤立波在锥形岛屿上的爬坡过程(Runup of solitary waves on a conical island) 算例简介模型配置网格及参数设置网格与地形初始条件与边界条件数值求解方法输出设置模拟时间 波浪(孤立波)入射边界的时间序列.bnd文件模拟结果注…

HTML5 SVG: 探索矢量图形的新纪元

HTML5 SVG: 探索矢量图形的新纪元 引言 HTML5,作为现代网页开发的核心技术之一,极大地推动了网页内容的丰富性和交互性。在HTML5的众多特性中,SVG(可缩放矢量图形)发挥着重要作用,它允许开发者创建复杂、响应式的矢量图形,这些图形在任何分辨率下都能保持清晰。本文将…

服务器推送有几种方式,分别有什么优缺点

服务器推送主要有以下几种方式: 长轮询(Long Polling): 优点: 相对简单易实现。能够在一定程度上减少无效的请求,降低服务器资源消耗。 缺点: 仍然存在一定的延迟。如果连接意外中断&#xff…

[吃瓜教程]南瓜书第4章决策树

1.决策树的算法原理 从逻辑角度,条件判断语句的组合;从几何角度,根据某种准则划分特征空间; 是一种分治的思想,其最终目的是将样本约分约纯,而划分的核心是在条件的选择或者说是**特征空间的划分标准 ** …

Mamba项目实战-Ubuntu

注:演示环境需要一个可用的cuda环境,可执行两个命令进行验证 1.nvidia-smi 2.nvcc -V 若出现正确输出,可继续博客以下的操作步骤,否则请确认是否已经安装或已配置环境变量,若未安装则转到博客:深度学习项…