19-Pandas merge合并操作

Pandas merge合并操作(主键合并数据)

Pandas 提供的 merge() 函数能够进行高效的合并操作,这与 SQL 关系型数据库的 join用法非常相似。从字面意思上不难理解,merge 翻译为“合并”,指的是将两个 DataFrame 数据表按照指定的规则进行连接,最后拼接成一个新的 DataFrame 数据表。

merge() 函数的法格式如下:

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,left_index=False, right_index=False, sort=True,suffixes=('_x', '_y'), copy=True)

参数说明,如下表所示:

参数名称说明
left/right两个不同的 DataFrame 对象。
on指定用于连接的键(即列标签的名字),该键必须同时存在于左右两个 DataFrame 中,如果没有指定,并且其他参数也未指定, 那么将会以两个 DataFrame 的列名交集做为连接键。
left_on指定左侧 DataFrame 中作连接键的列名。该参数在左、右列标签名不相同,但表达的含义相同时非常有用。
right_on指定左侧 DataFrame 中作连接键的列名。
left_index布尔参数,默认为 False。如果为 True 则使用左侧 DataFrame 的行索引作为连接键,若 DataFrame 具有多层 索引(MultiIndex),则层的数量必须与连接键的数量相等。
right_index布尔参数,默认为 False。如果为 True 则使用左侧 DataFrame 的行索引作为连接键。
how要执行的合并类型,从 {‘left’, ‘right’, ‘outer’, ‘inner’} 中取值,默认为“inner”内连接。
sort布尔值参数,默认为True,它会将合并后的数据进行排序;若设置为 False,则按照 how 给定的参数值进行排序。
suffixes字符串组成的元组。当左右 DataFrame 存在相同列名时,通过该参数可以在相同的列名后附加后缀名,默认为(‘_x’,‘_y’)。
copy默认为 True,表示对数据进行复制。

注意:Pandas 库的 merge() 支持各种内外连接,与其相似的还有 join() 函数(默认为左连接)。

准备两个不同的DataFrame,这里从文件中读取:

文件empdata.csv:

EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,COMM,DEPTNO
7369,SMITH,CLERK,7902.0,1980-12-17,800,,20
7499,ALLEN,SALESMAN,7698.0,1981-02-20,1600,300.0,30
7521,WARD,SALESMAN,7698.0,1981-02-22,1250,500.0,30
7566,JONES,MANAGER,7839.0,1981-04-02,2975,,20
7654,MARTIN,SALESMAN,7698.0,1981-09-28,1250,1400.0,30
7698,BLAKE,MANAGER,7839.0,1981-05-01,2850,,30
7782,CLARK,MANAGER,7839.0,1981-06-09,2450,,10
7788,SCOTT,ANALYST,7566.0,1987-04-19,3000,,20
7839,KING,PRESIDENT,,1981-11-17,5000,,10
7844,TURNER,SALESMAN,7698.0,1981-09-08,1500,0.0,30
7876,ADAMS,CLERK,7788.0,1987-05-23,1100,,20
7900,JAMES,CLERK,7698.0,1981-12-03,950,,30
7902,FORD,ANALYST,7566.0,1981-12-03,3000,,20
7934,MILLER,CLERK,7782.0,1982-01-23,1300,,10

文件deptdata.csv:

DEPTNO,DNAME,LOC
10,ACCOUNTING,NEW YORK
20,RESEARCH,DALLAS
30,SALES,CHICAGO
40,OPERATIONS,BOSTON

下面创建两个不同的 DataFrame,然后对它们进行合并操作:

import pandas as pd
import numpy as npdf_emp  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\empdata.csv')
df_dept  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\deptdata.csv')print("员工表中的df数据:\n",df_emp)
print("部门表中的df数据:\n",df_dept)

输出如下:

员工表中的df数据:EMPNO   ENAME        JOB     MGR    HIREDATE   SAL    COMM  DEPTNO
0    7369   SMITH      CLERK  7902.0  1980-12-17   800     NaN      20
1    7499   ALLEN   SALESMAN  7698.0  1981-02-20  1600   300.0      30
2    7521    WARD   SALESMAN  7698.0  1981-02-22  1250   500.0      30
3    7566   JONES    MANAGER  7839.0  1981-04-02  2975     NaN      20
4    7654  MARTIN   SALESMAN  7698.0  1981-09-28  1250  1400.0      30
5    7698   BLAKE    MANAGER  7839.0  1981-05-01  2850     NaN      30
6    7782   CLARK    MANAGER  7839.0  1981-06-09  2450     NaN      10
7    7788   SCOTT    ANALYST  7566.0  1987-04-19  3000     NaN      20
8    7839    KING  PRESIDENT     NaN  1981-11-17  5000     NaN      10
9    7844  TURNER   SALESMAN  7698.0  1981-09-08  1500     0.0      30
10   7876   ADAMS      CLERK  7788.0  1987-05-23  1100     NaN      20
11   7900   JAMES      CLERK  7698.0  1981-12-03   950     NaN      30
12   7902    FORD    ANALYST  7566.0  1981-12-03  3000     NaN      20
13   7934  MILLER      CLERK  7782.0  1982-01-23  1300     NaN      10
部门表中的df数据:DEPTNO       DNAME       LOC
0      10  ACCOUNTING  NEW YORK
1      20    RESEARCH    DALLAS
2      30       SALES   CHICAGO
3      40  OPERATIONS    BOSTON
1) 在单个键上进行合并操作

通过 on 参数指定一个连接键,然后对上述 DataFrame 进行合并操作:

import pandas as pd
import numpy as npdf_emp_left  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\empdata.csv')
df_dept_right  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\deptdata.csv')
# 通过on指定合并的主键
print(pd.merge(df_emp_left,df_dept_right,on="DEPTNO"))

输出结果:

    EMPNO   ENAME        JOB     MGR  ...    COMM  DEPTNO       DNAME       LOC
0    7782   CLARK    MANAGER  7839.0  ...     NaN      10  ACCOUNTING  NEW YORK
1    7839    KING  PRESIDENT     NaN  ...     NaN      10  ACCOUNTING  NEW YORK
2    7934  MILLER      CLERK  7782.0  ...     NaN      10  ACCOUNTING  NEW YORK
3    7369   SMITH      CLERK  7902.0  ...     NaN      20    RESEARCH    DALLAS
4    7566   JONES    MANAGER  7839.0  ...     NaN      20    RESEARCH    DALLAS
5    7788   SCOTT    ANALYST  7566.0  ...     NaN      20    RESEARCH    DALLAS
6    7876   ADAMS      CLERK  7788.0  ...     NaN      20    RESEARCH    DALLAS
7    7902    FORD    ANALYST  7566.0  ...     NaN      20    RESEARCH    DALLAS
8    7499   ALLEN   SALESMAN  7698.0  ...   300.0      30       SALES   CHICAGO
9    7521    WARD   SALESMAN  7698.0  ...   500.0      30       SALES   CHICAGO
10   7654  MARTIN   SALESMAN  7698.0  ...  1400.0      30       SALES   CHICAGO
11   7698   BLAKE    MANAGER  7839.0  ...     NaN      30       SALES   CHICAGO
12   7844  TURNER   SALESMAN  7698.0  ...     0.0      30       SALES   CHICAGO
13   7900   JAMES      CLERK  7698.0  ...     NaN      30       SALES   CHICAGO[14 rows x 10 columns]
2) 在多个键上进行合并操作

下面示例,指定多个键来合并上述两个 DataFrame 对象:(这里使用自定义数据了)

import pandas as pd
left = pd.DataFrame({'id':[1,2,3,4],'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'],'subject_id':['sub1','sub2','sub4','sub6']})
right = pd.DataFrame({'id':[1,2,3,4],'Name': ['Bill', 'Lucy', 'Jack', 'Mike'],'subject_id':['sub2','sub4','sub3','sub6']})
print(pd.merge(left,right,on=['id','subject_id']))

输出结果:

   id Name_x subject_id Name_y
0   4  Hilen       sub6   Mike

使用how参数合并

通过how参数可以确定 DataFrame 中要包含哪些键,如果在左表、右表都不存的键,那么合并后该键对应的值为 NaN。为了便于大家学习,我们将 how 参数和与其等价的 SQL 语句做了总结:

Merge方法等效 SQL描述
leftLEFT OUTER JOIN使用左侧对象的key
rightRIGHT OUTER JOIN使用右侧对象的key
outerFULL OUTER JOIN使用左右两侧所有key的并集
innerINNER JOIN使用左右两侧key的交集
1) left join
import pandas as pddf_emp_left  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\empdata.csv')
df_dept_right  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\deptdata.csv')
# 为了演示,这里将雇员7369的部门删除了,运行如下:
print(pd.merge(df_emp_left,df_dept_right,on="DEPTNO",how="left"))

输出结果:能发现7369的DEPTNO,DNAME,LOC都为NaN

    EMPNO   ENAME        JOB     MGR  ...    COMM  DEPTNO       DNAME       LOC
0    7369   SMITH      CLERK  7902.0  ...     NaN     NaN         NaN       NaN
1    7499   ALLEN   SALESMAN  7698.0  ...   300.0    30.0       SALES   CHICAGO
2    7521    WARD   SALESMAN  7698.0  ...   500.0    30.0       SALES   CHICAGO
3    7566   JONES    MANAGER  7839.0  ...     NaN    20.0    RESEARCH    DALLAS
4    7654  MARTIN   SALESMAN  7698.0  ...  1400.0    30.0       SALES   CHICAGO
5    7698   BLAKE    MANAGER  7839.0  ...     NaN    30.0       SALES   CHICAGO
6    7782   CLARK    MANAGER  7839.0  ...     NaN    10.0  ACCOUNTING  NEW YORK
7    7788   SCOTT    ANALYST  7566.0  ...     NaN    20.0    RESEARCH    DALLAS
8    7839    KING  PRESIDENT     NaN  ...     NaN    10.0  ACCOUNTING  NEW YORK
9    7844  TURNER   SALESMAN  7698.0  ...     0.0    30.0       SALES   CHICAGO
10   7876   ADAMS      CLERK  7788.0  ...     NaN    20.0    RESEARCH    DALLAS
11   7900   JAMES      CLERK  7698.0  ...     NaN    30.0       SALES   CHICAGO
12   7902    FORD    ANALYST  7566.0  ...     NaN    20.0    RESEARCH    DALLAS
13   7934  MILLER      CLERK  7782.0  ...     NaN    10.0  ACCOUNTING  NEW YORK[14 rows x 10 columns]
2) right join
import pandas as pddf_emp_left  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\empdata.csv')
df_dept_right  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\deptdata.csv')
# 部门40因为没有员工,所以对应员工的信息全部为NaN
print(pd.merge(df_emp_left,df_dept_right,on="DEPTNO",how="right"))

输出结果:(部门40因为没有员工,所以对应员工的信息全部为NaN)

     EMPNO   ENAME        JOB     MGR  ...    COMM  DEPTNO       DNAME       LOC
0   7782.0   CLARK    MANAGER  7839.0  ...     NaN      10  ACCOUNTING  NEW YORK
1   7839.0    KING  PRESIDENT     NaN  ...     NaN      10  ACCOUNTING  NEW YORK
2   7934.0  MILLER      CLERK  7782.0  ...     NaN      10  ACCOUNTING  NEW YORK
3   7369.0   SMITH      CLERK  7902.0  ...     NaN      20    RESEARCH    DALLAS
4   7566.0   JONES    MANAGER  7839.0  ...     NaN      20    RESEARCH    DALLAS
5   7788.0   SCOTT    ANALYST  7566.0  ...     NaN      20    RESEARCH    DALLAS
6   7876.0   ADAMS      CLERK  7788.0  ...     NaN      20    RESEARCH    DALLAS
7   7902.0    FORD    ANALYST  7566.0  ...     NaN      20    RESEARCH    DALLAS
8   7499.0   ALLEN   SALESMAN  7698.0  ...   300.0      30       SALES   CHICAGO
9   7521.0    WARD   SALESMAN  7698.0  ...   500.0      30       SALES   CHICAGO
10  7654.0  MARTIN   SALESMAN  7698.0  ...  1400.0      30       SALES   CHICAGO
11  7698.0   BLAKE    MANAGER  7839.0  ...     NaN      30       SALES   CHICAGO
12  7844.0  TURNER   SALESMAN  7698.0  ...     0.0      30       SALES   CHICAGO
13  7900.0   JAMES      CLERK  7698.0  ...     NaN      30       SALES   CHICAGO
14     NaN     NaN        NaN     NaN  ...     NaN      40  OPERATIONS    BOSTON[15 rows x 10 columns]
3) outer join(并集)
import pandas as pddf_emp_left  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\empdata.csv')
df_dept_right  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\deptdata.csv')
# 部门40因为没有员工,所以对应员工的信息全部为NaN,又因为7369没对应的部门,所以部门信息全部为Nan
print(pd.merge(df_emp_left,df_dept_right,on="DEPTNO",how="outer"))

输出结果:

     EMPNO   ENAME        JOB     MGR  ...    COMM  DEPTNO       DNAME       LOC
0   7369.0   SMITH      CLERK  7902.0  ...     NaN     NaN         NaN       NaN
1   7499.0   ALLEN   SALESMAN  7698.0  ...   300.0    30.0       SALES   CHICAGO
2   7521.0    WARD   SALESMAN  7698.0  ...   500.0    30.0       SALES   CHICAGO
3   7654.0  MARTIN   SALESMAN  7698.0  ...  1400.0    30.0       SALES   CHICAGO
4   7698.0   BLAKE    MANAGER  7839.0  ...     NaN    30.0       SALES   CHICAGO
5   7844.0  TURNER   SALESMAN  7698.0  ...     0.0    30.0       SALES   CHICAGO
6   7900.0   JAMES      CLERK  7698.0  ...     NaN    30.0       SALES   CHICAGO
7   7566.0   JONES    MANAGER  7839.0  ...     NaN    20.0    RESEARCH    DALLAS
8   7788.0   SCOTT    ANALYST  7566.0  ...     NaN    20.0    RESEARCH    DALLAS
9   7876.0   ADAMS      CLERK  7788.0  ...     NaN    20.0    RESEARCH    DALLAS
10  7902.0    FORD    ANALYST  7566.0  ...     NaN    20.0    RESEARCH    DALLAS
11  7782.0   CLARK    MANAGER  7839.0  ...     NaN    10.0  ACCOUNTING  NEW YORK
12  7839.0    KING  PRESIDENT     NaN  ...     NaN    10.0  ACCOUNTING  NEW YORK
13  7934.0  MILLER      CLERK  7782.0  ...     NaN    10.0  ACCOUNTING  NEW YORK
14     NaN     NaN        NaN     NaN  ...     NaN    40.0  OPERATIONS    BOSTON[15 rows x 10 columns]
4) inner join(交集)
import pandas as pddf_emp_left  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\empdata.csv')
df_dept_right  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\deptdata.csv')
# 部门40因为没有员工,,又因为7369没对应的部门,所以部门40和员工7369没显示
print(pd.merge(df_emp_left,df_dept_right,on="DEPTNO",how="inner"))

输出结果:

    EMPNO   ENAME        JOB     MGR  ...    COMM  DEPTNO       DNAME       LOC
0    7499   ALLEN   SALESMAN  7698.0  ...   300.0    30.0       SALES   CHICAGO
1    7521    WARD   SALESMAN  7698.0  ...   500.0    30.0       SALES   CHICAGO
2    7654  MARTIN   SALESMAN  7698.0  ...  1400.0    30.0       SALES   CHICAGO
3    7698   BLAKE    MANAGER  7839.0  ...     NaN    30.0       SALES   CHICAGO
4    7844  TURNER   SALESMAN  7698.0  ...     0.0    30.0       SALES   CHICAGO
5    7900   JAMES      CLERK  7698.0  ...     NaN    30.0       SALES   CHICAGO
6    7566   JONES    MANAGER  7839.0  ...     NaN    20.0    RESEARCH    DALLAS
7    7788   SCOTT    ANALYST  7566.0  ...     NaN    20.0    RESEARCH    DALLAS
8    7876   ADAMS      CLERK  7788.0  ...     NaN    20.0    RESEARCH    DALLAS
9    7902    FORD    ANALYST  7566.0  ...     NaN    20.0    RESEARCH    DALLAS
10   7782   CLARK    MANAGER  7839.0  ...     NaN    10.0  ACCOUNTING  NEW YORK
11   7839    KING  PRESIDENT     NaN  ...     NaN    10.0  ACCOUNTING  NEW YORK
12   7934  MILLER      CLERK  7782.0  ...     NaN    10.0  ACCOUNTING  NEW YORK

注意:当 a 与 b 进行内连操作时 a.join(b) 不等于 b.join(a)。

5)使用join函数

如果左右两个表的主键名相同,可以使用join函数。

import pandas as pddf_emp_left  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\empdata.csv')
df_dept_right  = pd.read_csv('C:\\Users\\qwy\Desktop\data\\deptdata.csv')
print(df_emp_left.join(df_dept_right,how="outer",rsuffix='1'))

运行结果:

    EMPNO   ENAME        JOB     MGR  ... DEPTNO  DEPTNO1       DNAME       LOC
0    7369   SMITH      CLERK  7902.0  ...    NaN     10.0  ACCOUNTING  NEW YORK
1    7499   ALLEN   SALESMAN  7698.0  ...   30.0     20.0    RESEARCH    DALLAS
2    7521    WARD   SALESMAN  7698.0  ...   30.0     30.0       SALES   CHICAGO
3    7566   JONES    MANAGER  7839.0  ...   20.0     40.0  OPERATIONS    BOSTON
4    7654  MARTIN   SALESMAN  7698.0  ...   30.0      NaN         NaN       NaN
5    7698   BLAKE    MANAGER  7839.0  ...   30.0      NaN         NaN       NaN
6    7782   CLARK    MANAGER  7839.0  ...   10.0      NaN         NaN       NaN
7    7788   SCOTT    ANALYST  7566.0  ...   20.0      NaN         NaN       NaN
8    7839    KING  PRESIDENT     NaN  ...   10.0      NaN         NaN       NaN
9    7844  TURNER   SALESMAN  7698.0  ...   30.0      NaN         NaN       NaN
10   7876   ADAMS      CLERK  7788.0  ...   20.0      NaN         NaN       NaN
11   7900   JAMES      CLERK  7698.0  ...   30.0      NaN         NaN       NaN
12   7902    FORD    ANALYST  7566.0  ...   20.0      NaN         NaN       NaN
13   7934  MILLER      CLERK  7782.0  ...   10.0      NaN         NaN       NaN

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/38860.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++多态~~的两个特殊情况

目录 1.多态的概念 2.简单认识 (1)一个案例 (2)多态的两个满足条件 (3)虚函数的重写 (4)两个特殊情况 1.多态的概念 (1)多态就是多种形态; …

SQL 29 计算用户的平均次日留存率题解

问题截图如下: SQL建表代码: drop table if exists user_profile; drop table if exists question_practice_detail; drop table if exists question_detail; CREATE TABLE user_profile ( id int NOT NULL, device_id int NOT NULL, gender varchar…

小白也能懂:逆向分析某网站加速乐Cookie参数流程详解

加速乐作为一种常见的反爬虫技术,在网络上已有大量详尽深入的教程可供参考。然而,对于那些初次接触的人来说,直接面对它可能仍会感到困惑。 声明 本文仅用于学习交流,学习探讨逆向知识,欢迎私信共享学习心得。如有侵权…

【区块链+基础设施】珠三角征信链 | FISCO BCOS应用案例

“珠三角征信链”是中国人民银行广州分行、中国人民银行深圳市中心支行按照中国人民银行总行工作部署,积 极贯彻珠三角一体化发展、粤港澳大湾区建设等国家战略而建设的跨区域征信一体化数据中心枢纽,以 FISCO BCOS 为底链构建应用平台,并由微…

springboot接口防抖【防重复提交】

什么是防抖 所谓防抖,一是防用户手抖,二是防网络抖动。在Web系统中,表单提交是一个非常常见的功能,如果不加控制,容易因为用户的误操作或网络延迟导致同一请求被发送多次,进而生成重复的数据记录。要针对用…

猫头虎分享如何使用AIGC一键生成爆款公众号文案?

猫头虎分享如何使用AIGC一键生成爆款公众号文案? 前言 在自媒体时代,如何撰写一篇能引发广泛分享、获得微信平台推荐的爆款文章,是每一位公众号作者追求的目标。今天,猫头虎将为大家揭秘如何利用AIGC(人工智能生成内…

Docker 镜像导出和导入

docker 镜像导出 # 导出 docker 镜像到本地文件 docker save -o [输出文件名.tar] [镜像名称[:标签]] # 示例 docker save -o minio.tar minio/minio:latest-o 或 --output:指定导出文件的路径和名称[镜像名称[:标签]]:导出镜像名称以及可选的标签 dock…

【Python画图-驯化01】一文叫你搭建python画图最优环境配置

【Python画图-循环01】一文叫你搭建python画图最优环境配置 本次修炼方法请往下查看 🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地! 🎇 免费获取相关内容文档关注&#…

Windows/Linux/Mac 系统局域网服务发现协议及传输速度比较

简介 分析 / 验证对比常见局域网服务发现协议在 Windows/Linux/Mac 等不同系统下的支持和表现 在使用不同系统的智能硬件时,如常见的树莓派 / Openwrt 路由器 / Debian/Fedora/Windows/Mac 等系统是,系统间相互发现以及网络共享本应是系统的基础服务&a…

数据库-数据完整性-实体完整性实验

删除实体完整性,删除学生实体的主码: Alter table student drop PRIMARY KEY; 验证实体完整性: 可以尝试插入或更新违反实体完整性约束的数据。 1.尝试插入重复的主键值: 假设我们有一个名为"student"的表&#xff0c…

探秘 Django 专业之道

一、Django项目开发 1.web框架底层 1.1 网络通信 注意:局域网 个人一般写程序,想要让别人访问:阿里云、腾讯云。 去云平台租服务器(含公网IP)程序放在云服务器 先以局域网为例 我的电脑【服务端】 import sock…

使用Spring Boot和Spring Security保护你的应用

使用Spring Boot和Spring Security保护你的应用 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨如何利用Spring Boot和Spring Security来保护…

openwrt 23.05.2 稳定版本 导入树莓派4B

openwrt 23.05.2 稳定版本 导入树莓派4B 强烈建议新手使用稳定版本 这里真的非常感谢这篇博客提供了大量支持,本文有大量篇幅抄袭。 https://blog.csdn.net/qq_44730817/article/details/135258664 编译系统(Build system usage) 下载源代…

Linux下SUID提权学习 - 从原理到使用

目录 1. 文件权限介绍1.1 suid权限1.2 sgid权限1.3 sticky权限 2. SUID权限3. 设置SUID权限4. SUID提权原理5. SUID提权步骤6. 常用指令的提权方法6.1 nmap6.2 find6.3 vim6.4 bash6.5 less6.6 more6.7 其他命令的提权方法 1. 文件权限介绍 linux的文件有普通权限和特殊权限&a…

计算机毕业设计Python深度学习美食推荐系统 美食可视化 美食数据分析大屏 美食爬虫 美团爬虫 机器学习 大数据毕业设计 Django Vue.js

Python美食推荐系统开题报告 一、项目背景与意义 随着互联网和移动技术的飞速发展,人们的生活方式发生了巨大变化,尤其是餐饮行业。在线美食平台如雨后春笋般涌现,为用户提供了丰富的美食选择。然而,如何在海量的餐饮信息中快速…

token的原理,机制

什么是token token的意思是“令牌”,更通俗点说其实就是一种通信双方之间的暗号,大家应该都看过谍战片吧,里面地下党接头都免不了说一堆只有他们自己明白,而别人却一头雾水的废话。token其实也是一样的,是当客户端第一…

(1)Jupyter Notebook 下载及安装

目录 1. Jupyter Notebook是什么?2. Jupyter Notebook特征3. 应用3. 利用Google Colab安装Jupyter Notebook3.1 什么是 Colab?3.2 访问 Google Colab 1. Jupyter Notebook是什么? 百度百科: Jupyter Notebook(此前被称为 IPython …

Unity Shader 软粒子

Unity Shader 软粒子 前言项目Shader连连看项目渲染管线设置 鸣谢 前言 当场景有点单调的时候,就需要一些粒子点缀,此时软粒子就可以发挥作用了。 使用软粒子与未使用软粒子对比图 项目 Shader连连看 这里插播一点,可以用Vertex Color与…

ARP 原理详解 二

只要确定了 IP 地址后,就能够向这个 IP 地址所在的主机发送数据报,这是我们所熟知的事情。 但是再往深了想,IP 地址只是标识网络层的地址,那么在网络层下方数据链路层是不是也有一个地址能够告诉对方主机自己的地址呢&#xff1f…

生产环境部署与协同开发-Docker(原创超全)

关闭防火墙 systemctl stop firewalld.service 关闭SELinux vim /etc/selinux/config 查看yum支持的包并安装docker引擎 yum listyum install -y docker 启动docker设置docker自启动测试docker是否安装成功? systemctl start dockersystemctl enable dockerdoc…