【24医学顶刊】GANDALF:主动学习 + 图注意力变换器 + 变分自编码器,改善多标签图像分类

GANDALF:主动学习 + 图注意力变换器 + 变分自编码器,改善多标签图像分类

      • 提出背景
        • 子解法1:多标签信息样本的选择
        • 子解法2:生成信息丰富且非冗余的合成样本
      • 例子:胸部X射线图像分析
        • 传统方法的操作和局限
        • GaNDLF方法的优势
      • 工作流程
      • 图多集合变换器
      • 数据增强的采样与评分

提出背景

论文:GANDALF: Graph-based transformer and Data Augmentation Active Learning Framework with interpretable features for multi-label chest Xray classification

代码:https://github.com/mlcommons/GaNDLF

目的:GaNDLF旨在通过合成训练数据的方式,提高多标签医学图像分类任务的学习效率和分类性能。

解法拆解

  1. 多标签信息样本的选择(因为标签间的相互影响) +
  2. 生成信息丰富且非冗余的合成样本(因为训练样本的多样性和信息量)
子解法1:多标签信息样本的选择
  • 特征:在多标签学习场景中,不同疾病标签之间的相互影响可能会影响模型的判断和学习。
  • 解法说明:通过构建一个图形模型,每个节点代表一个疾病标签的显著图,节点之间的边代表不同标签之间的相互关系。使用图转换器来评估和选择具有高度信息交互的样本,从而更有效地捕获多标签之间的复杂关系。
  • 例子:在胸部X射线图像中,某些疾病(如肺炎和肺结核)可能表现出相似的影像特征。有效地识别和利用这些相互关系可以帮助模型区分这些相似的疾病,提高诊断的准确性。
子解法2:生成信息丰富且非冗余的合成样本
  • 特征:仅靠原始的训练样本,可能不足以覆盖所有的特征变异,限制了模型的泛化能力。
  • 解法说明:使用变分自编码器(VAE)从选定的信息丰富样本中生成新的合成图像。这些新图像不仅保持原有的类标签,还引入了新的变化,增加了数据的多样性,同时避免了信息的冗余。
  • 例子:如果原始数据集中大部分图像展示的是早期肺炎,通过合成技术可以生成展示更多不同阶段和表现形式的肺炎图像,这样模型可以学习到肺炎在不同阶段的多样性,提高识别不同阶段肺炎的能力。

这两种子解法结合,通过在样本选择和数据增强中都注重信息的多样性和质量,为多标签分类任务提供了一种更有效的学习策略。

例子:胸部X射线图像分析

医疗研究人员需要对胸部X射线图像进行分类,识别图中可能存在的多种疾病(如肺炎、肺结核、肺癌等)。

传统方法的操作和局限
  • 数据集:使用一个固定的、预先标注的数据集,其中可能缺乏某些疾病的表现形式多样性。
  • 数据增强:应用基本的图像处理技术(如翻转、旋转),这些技术虽然增加了图像数量,但并未实质增加关于疾病特征的新信息。
  • 样本选择:随机或基于简单规则选择样本,这可能导致关键信息样本被忽略,从而影响模型的准确性和泛化能力。
GaNDLF方法的优势
  • 动态样本选择
    • 使用图注意力变换器(GAT)分析未标记的胸部X射线图像,根据疾病标签间的相互影响动态选择信息量最大的样本。例如,如果系统发现某些图像中肺炎和肺结核的特征同时显著,它会优先选择这些样本进行训练,因为这样的样本能帮助模型更好地学习区分具有相似表现的不同疾病。
  • 高级数据增强
    • 利用变分自编码器(VAE)根据选定的高信息量样本生成新的图像。这些合成图像在保留原有疾病标签的同时,引入了新的变体(如不同阶段的病变),从而丰富了模型的训练数据。例如,对于初始阶段肺炎的图像,VAE可以生成显示肺炎后期更严重病变的图像,这有助于模型学习识别疾病的不同阶段。
  • 减少冗余,确保新增样本的质量
    • 通过结合标签保持评分和避免冗余评分,确保生成的样本在增加新信息的同时,避免与已有训练样本重复。这一策略确保了每一个新增样本都能为模型训练提供真正的价值。

结果比较:

  • 传统方法可能导致模型在遇到未包含在初始数据集中的疾病变异时性能下降。
  • GaNDLF方法通过提供更广泛的病变样本和更精确的样本选择,显著提高了模型的诊断准确性和泛化能力。

通过这个例子,我们可以看到GaNDLF方法不仅使模型训练更为有效,还增强了模型在实际应用中的可靠性和准确性。

工作流程

在这里插入图片描述

此图展示了GANDALF方法的整体工作流程:

  1. 未标记样本:从一个可用于主动学习周期的未标记样本池开始。
  2. 使用可解释显著图创建输入图:显著图用于创建输入图。这些图突出显示图像中对分类最关键的区域。
  3. 来自GAT(图注意力变换器)的多标签样本信息评分:然后使用图注意力变换器处理图,根据图中表示的标签间互动评估每个样本的信息量。
  4. 选择顶尖n个样本:选择最具信息量的样本。
  5. 信息数据增强:选定的样本用于生成合成且具有信息量的样本,这些样本对训练数据进行了非冗余的增强。
  6. 添加到训练集:原始样本和新生成的合成样本都被添加到训练集中,用于下一个主动学习周期。

一个医疗研究中心希望通过机器学习模型提高其对胸部X射线图像中多种疾病(如肺炎、肺结核和肺癌)的自动诊断能力。

GANDALF方法的操作步骤:

  1. 未标记样本

    • 医院收集了大量的胸部X射线图像,这些图像尚未进行疾病标记。这些未标记的样本构成了主动学习周期的样本池。
  2. 使用可解释显著图创建输入图

    • 研究人员使用计算机视觉技术分析每张X射线图像,创建显著图。这些显著图突出显示了图像中对于诊断最为关键的区域,如异常阴影或肺部结构变化。
  3. 来自GAT的多标签样本信息评分

    • 利用图注意力变换器(GAT),分析由显著图构建的图形数据。GAT评估不同疾病标签在显著区域间的互动和联系,识别出潜在的复合疾病特征,计算每个样本的信息量。
  4. 选择顶尖n个样本

    • 系统根据信息评分选择信息量最大的前n个样本,这些样本表现出高度的疾病特征复杂性和诊断价值。
  5. 信息数据增强

    • 选定的信息丰富样本被用于生成新的合成样本。使用变分自编码器(VAE)在保持原有疾病标签的同时引入图像变体,如模拟疾病的不同发展阶段或轻微的解剖差异。
  6. 添加到训练集

    • 原始的信息丰富样本及其合成的衍生样本都被添加到训练集中。这些数据将用于训练和优化机器学习模型,模型随后在下一个主动学习周期中更精准地诊断和识别复杂的疾病模式。

通过GANDALF方法,该医疗中心的机器学习模型能够更有效地识别和分类胸部X射线图像中的多种疾病。

模型不仅学习从单一病变中识别疾病,还能识别多疾病共存的复杂情况,大大提高了诊断的准确性和效率。

图多集合变换器

在这里插入图片描述

此图详细说明了GANDALF方法中使用的图多集合变换器的过程和组件:

  1. 输入图:显示基于样本的多标签信息的显著图创建的初始图。
  2. 图注意力(GMH):利用基于图的注意力机制来关注图中的重要特征和关系。
  3. GMH输出:图注意力阶段的输出。
  4. 图池化(GMPool):通过基于节点的连通性和相似性合并节点,将图简化为更简单的形式,有效地总结图的信息。
  5. 自注意力(SelfAtt):应用自注意力机制进一步细化节点特征,考虑其中的相互作用。
  6. 最终池化到ML_Info:最终的图表示被汇总为单一分数(ML_Info),量化样本的总体信息量。

假设一家医院希望利用深度学习模型识别和分类患者的胸部X射线图像,特别是能够同时识别多种肺部疾病的共存,如肺炎和肺癌。

  1. 输入图

    • 医生收集了一系列胸部X射线图像,这些图像未经标记且疑似包含多种肺部疾病。使用计算机视觉技术对这些图像生成显著图,突出显示对诊断至关重要的区域。例如,图中可能突出显示了肺部的异常阴影区域和肿块。
  2. 图注意力(GMH)

    • 利用图注意力机制,模型分析这些显著图构建的输入图。图中的每个节点代表一个特定区域的显著特征,而边则表示这些区域之间的相互关系。这一步骤帮助模型聚焦于那些可能指示多种疾病共存的关键特征。
  3. GMH输出

    • 注意力机制处理后的输出图,其中包括了经过优化的节点和边,这些信息代表了图像中最关键的相互作用和特征关系。
  4. 图池化(GMPool)

    • 通过图池化技术,进一步简化图结构,合并那些具有高度相似性或连通性的节点。例如,如果多个节点都指向同一区域的疾病特征,这些节点可以合并为一个,从而简化模型的复杂性并增强信息的清晰度。
  5. 自注意力(SelfAtt)

    • 自注意力机制用于加强模型对各节点特征的理解,它通过比较各节点间的相互作用强化了模型对图中信息的总体把握。这有助于模型更好地理解不同疾病标签之间的复杂关系。
  6. 最终池化到ML_Info

    • 将所有处理过的图信息汇总为一个单一的分数(ML_Info),这个分数量化了整个样本图的总体信息量。这个分数可以直接用于训练模型,帮助预测胸部X射线图像中的疾病类型。

这种方法使模型能够准确识别并分类图像中的多种疾病,如正确区分并同时识别存在于同一患者图像中的肺炎和肺癌。

这对于提早诊断和治疗计划的制定极为关键,特别是在复合疾病的情况下。

数据增强的采样与评分

在这里插入图片描述

此图解释了增强和选择信息样本所涉及的步骤:

  1. 采样机制:使用变分自编码器(VAE)生成有信息量的基础样本的变体。VAE在当前数据集上训练,以确保它产生相关的变体。
  2. 评分系统:生成的样本根据两个标准进行评分:
    • 标签评分(Score_label):评估生成样本在保留原始样本的类标签方面的表现。
    • 避免冗余评分(Score_red):评估生成的样本与原始样本的差异,确保它们在不复制现有数据的情况下添加新信息。
  3. 选择顶尖样本:得分最高的样本,表明它们既有信息量又具多样性,被选中添加到下一个主动学习周期的训练集中。

假设一家医院正在研究一个新的机器学习模型,用以分析心脏超声图像,以诊断心脏瓣膜病变、心肌病变以及心包积液等多种心脏疾病。

  1. 采样机制

    • 医疗研究团队使用变分自编码器(VAE)处理一组心脏超声图像。VAE模型在包含各种心脏病状的广泛数据集上训练,使其能够生成包含不同心脏状况的合成图像。例如,VAE可能生成一些展示不同程度心肌肥厚或瓣膜泄漏的图像,这些都是原始数据集中可能未充分代表的病变。
  2. 评分系统

    • 标签评分(Score_label):每个生成的图像会被评估其在保留心脏病变特征(如瓣膜泄漏的特定标记)方面的准确性。如果合成图像能准确地保持原始图像的病理标签,则获得高标签评分。
    • 避免冗余评分(Score_red):此外,还会评估合成图像与原始图像的差异性,确保新增的图像为模型训练提供新的信息。例如,如果生成的图像展示了与原始数据集不同阶段的病变,而且这种差异足够大以避免简单的重复,则获得高避免冗余评分。
  3. 选择顶尖样本

    • 基于上述两种评分,选择得分最高的样本以添加到模型的训练集中。这确保了选中的图像不仅在医学上具有高度的相关性和准确性,而且能够增加训练集的多样性和信息量。这对于提升模型在实际诊断中的准确性和泛化能力至关重要。

通过这种方法,新的心脏疾病诊断模型能够接触到更广泛的心脏病变表现,包括那些在原始数据集中未充分代表的病变阶段和类型。

这使得模型在现实世界应用中能更准确地识别和分类心脏疾病,特别是在处理罕见或复杂病例时表现出更高的效率和准确性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/38669.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

超级会员卡积分收银系统小程序源码系统 前后端完整分离 带完整的安装代码包以及搭建教程

系统概述 超级会员卡积分收银系统小程序源码系统是专为各类商业场景设计的综合性平台。它旨在为商家提供一站式的解决方案,涵盖了会员管理、积分体系、收银操作以及数据统计等多个重要方面。 该系统的前后端分离架构确保了系统的灵活性和可扩展性。前端负责用户界…

如何用程序批量下载小红书的图片?

如何使用MediaCrawler快速下载图片 作为一名图像算法工程师,怎么能没有图片资源呢?今天,我要介绍一个能快速下载图片的方法,仅供学习使用,请勿用于其他用途。 下载项目 首先,从GitHub下载项目&#xff1…

强化学习的数学原理:贝尔曼公式

大纲 这一节课程的大纲: 重点 对于这次课,重点是两个东西: Motivating examples(为什么需要贝尔曼公式) 首先要明白,为什么 return 是重要的? 之前其实就说过,return 能够帮助我们评价一个策略是好还是坏…

LVGL实现字库的下载和使用

1 字库 字库的概念:相应文字或字符的合集。 点阵字库:按字库顺序排列的字符/汉字字模的合集。 LVGL中字库使用Unicode编码,Unicode 是全球文字统一编码。它把世界上的各种文字的每一个字符指定唯一编码,实现跨语种、跨平台的应…

大数据开发助手:Coze平台上一款致力于高效解决大数据开发问题的智能Bot!

大数据开发助手:Coze平台上一款致力于高效解决大数据开发问题的智能Bot 核心技术揭秘1. **自然语言处理(NLP)**2. **知识图谱构建**3. **个性化推荐算法** 功能特色概览1. **即时问题解答**2. **最佳实践分享**3. **个性化学习路径**4. **社区…

哪个牌子的超声波清洗器好?精选四大超强超声波清洗机力荐

生活中戴眼镜的人群不在少数,然而要维持眼镜的干净却不得不每次都需要清洗,只是通过手洗的方式实在太慢并且容易操作不当让镜片磨损更加严重!所以超声波清洗机就诞生了!超声波清洗机能够轻松清洗机眼镜上面的油脂污渍,…

synchronized 锁优化原理

目录 一、轻量级锁 二、锁膨胀 三、自旋优化 四、偏向锁 五、锁消除 一、轻量级锁 1. 会创建一个锁记录 Lock Record(保存在线程栈中),尝试 CAS 修改 Mark Word 中的对象头,是一种乐观锁的思想,而不是将 Java 对…

机器学习——强化学习状态值函数V和动作值函数Q的个人思考

最近在回顾《西瓜书》的理论知识,回顾到最后一章——“强化学习”时对于值函数部分有些懵了,所以重新在网上查了一下,发现之前理解的,包括网上的大多数对于值函数的描述都过于学术化、公式化,不太能直观的理解值函数以…

macos Automator自动操作 app, 创建自定义 应用程序 app 的方法

mac内置的这个 自动操作 automator 应用程序,可以帮助我们做很多的重复的工作,可以创建工作流, 可以录制并回放操作, 还可以帮助我们创建自定的应用程序,下面我们就以创建一个自定义启动参数的chrome.app为例&#xff…

cube-studio 开源一站式云原生机器学习/深度学习/大模型训练推理平台介绍

全栈工程师开发手册 (作者:栾鹏) 一站式云原生机器学习平台 前言 开源地址:https://github.com/tencentmusic/cube-studio cube studio 腾讯开源的国内最热门的一站式机器学习mlops/大模型训练平台,支持多租户&…

绘图黑系配色

随便看了几篇小论文,里面的黑配色挺喜欢的,虽然平时SCI系配色用的多,但看到纯黑配色与黑加蓝配色,那就是我最心上的最优style。

一文了解IP地址冲突的起因与解决方案

IP 地址冲突是困扰网络管理员影响网络的正常运行的常见因素。深入理解并有效解决 IP 地址冲突故障对于维护网络的高效稳定运行具有重要意义。 一、IP 地址冲突的原因 (一)人为配置错误 网络用户在手动配置 IP 地址时,对网络配置了解不多用户…

OpenGL3.3_C++_Windows(23)

伽ga马校正 物理亮度 光子数量 线性空间:光子数(亮度)和颜色值的线性关系人眼感知的亮度:对比较暗的颜色变化更敏感,感知亮度基于人的感觉非线性空间:光子数(亮度)和 颜色值^2.2,恰好符合屏幕…

为什么我学个 JAVA 就已经耗尽所有而有些人还能同时学习多门语言

在开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「JAVA的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!!我的入门语言是C&#xff0c…

互联网场景下人脸服务基线方案总结

1.简介 1.1目的 在过去的一段时间里,因为听见业务对人脸服务方案的需求,针对网络视频中关键人物定位的检索任务,完成了基于互联网场景的人脸基线服务的构建。本文档是对当前基线服务以后之后解决方案的优化进行总结。 1.2范围 本文档描述的人…

c++读取文件时出现中文乱码

原因:UTF-8格式不支持汉字编码 解决:改成ANSI,因为ANSI编码支持汉字编码

Python学习路线图(2024最新版)

这是我最开始学Python时的一套学习路线,从入门到上手。(不敢说精通,哈哈~) 一、Python基础知识、变量、数据类型 二、Python条件结构、循环结构 三、Python函数 四、字符串 五、列表与元组 六、字典与集合 最后再送给大家一套免费…

KVB App:中国制造业数据支撑澳元,分析师预计挑战0.6750阻力

摘要: 中国6月财新制造业PMI上升至51.8,反映出制造业生产经营活动的持续扩张。这一数据不仅高于预期,还为澳元提供了强有力的支撑。技术分析显示,澳元/美元可能会在短期内挑战0.6750阻力水平。 中国制造业数据解析 6月&#xff0…

python异常、模块与包

目录 了解异常异常的捕获方法python模块python包安装第三方包 了解异常 什么是异常 当检测到一个错误时,python解释器就无法继续执行了,反而出现了一些错误的提示,这就是所谓的“异常”,也就是我们常说的BUG bug单词的诞生 早期…

Python tkinter: 开发一个目标检测GUI小程序

程序提供了一个用户友好的界面,允许用户选择图片或文件夹,使用行人检测模型进行处理,并在GUI中显示检测结果。用户可以通过点击画布上的检测结果来获取更多信息,并使用键盘快捷键来浏览不同的图片。 一. 基本功能介绍 界面布局&am…