【机器学习】在【Pycharm】中的应用:【线性回归模型】进行【房价预测】

 专栏:机器学习笔记

pycharm专业版免费激活教程见资源,私信我给你发

python相关库的安装:pandas,numpy,matplotlib,statsmodels

1. 引言

线性回归(Linear Regression)是一种常见的统计方法和机器学习算法,用于根据一个或多个特征变量(自变量)来预测目标变量(因变量)的值。在许多实际应用中,线性回归因其简单性和有效性而被广泛使用,例如预测房价、股票市场分析、市场营销和经济学等领域。

在这篇文章中,我们将详细介绍如何使用Pycharm这个集成开发环境(IDE)来进行线性回归建模。通过一个具体的房价预测案例,从数据导入、预处理、建模、评估到结果可视化的完整流程,一步步指导你如何实现和理解线性回归模型。无论你是数据科学新手还是有经验的程序员,希望通过本文,你能掌握使用Pycharm进行机器学习项目的基本方法和步骤。

2. 环境设置

在开始之前,确保你已经安装了Pycharm以及必要的Python库。接下来我们将介绍如何安装和设置这些工具和库。

2.1 安装Pycharm

Pycharm是由JetBrains公司开发的一款专业的Python集成开发环境(IDE),特别适合数据科学和机器学习项目。它提供了丰富的功能,如代码补全、调试、测试和版本控制等,使开发过程更加高效和便捷。

下载与安装

  • 访问Pycharm官网。
  • 根据你的操作系统选择合适的版本下载。Pycharm有两个版本:社区版(Community)和专业版(Professional)。社区版是免费的,适合一般的Python开发需求;专业版则提供更多高级功能,适合数据科学和Web开发等高级应用。
  • 下载完成后,按照安装向导进行安装。以Windows系统为例,下载后运行安装程序,按照默认设置一步步点击“下一步”(Next),直到完成安装。Mac和Linux系统的安装步骤也类似。

启动Pycharm

  • 安装完成后,启动Pycharm。在欢迎界面上,选择“Create New Project”以创建一个新的项目。你可以为你的项目选择一个合适的名称和存储位置。
  • 在创建项目的过程中,Pycharm会提示你选择Python解释器。通常情况下,选择系统默认的Python解释器即可。如果你还没有安装Python,可以前往Python官网下载并安装。

2.2 安装必要的库

在Pycharm中安装库非常方便。你可以通过Pycharm的Terminal终端直接使用pip命令进行安装,也可以通过Pycharm的图形界面安装库。

1.使用Terminal安装库

  • 打开Pycharm,进入项目。
  • 在Pycharm界面的底部找到Terminal选项并点击打开。
  • 在Terminal中输入以下命令来安装所需的Python库:
pip install numpy pandas scikit-learn matplotlib

2.使用图形界面安装库

  • 打开Pycharm,进入项目。
  • 在顶部菜单栏找到File选项并点击,选择Settings(或Preferences)。
  • 在设置窗口左侧找到Project: 项目名称,点击展开,然后选择Python Interpreter。
  • 在右侧窗口中,点击+号按钮,搜索并安装所需的库。
  • numpy:用于数值计算,提供支持多维数组对象。
  • pandas:用于数据处理,特别是数据集的加载和预处理。
  • scikit-learn:用于构建和评估机器学习模型。

这些库是进行数据科学和机器学习不可或缺的工具。

安装完成后,你可以在Pycharm的Terminal中输入以下命令,检查这些库是否安装成功:

python -c "import numpy, pandas, sklearn, matplotlib; print('All libraries are installed successfully')"

如果一切正常,你会看到相应的成功提示信息。

3. 数据准备

数据准备是机器学习项目中非常重要的一步。在这个例子中,我们将使用一个包含房价相关信息的数据集。首先,需要创建一个CSV文件并将其导入到Pycharm项目中。

3.1 创建CSV文件

你可以使用任何文本编辑器(如Notepad、Sublime Text、VS Code等)创建一个house_prices.csv文件,并将以下数据粘贴进去:

square_footage,number_of_bedrooms,price
1500,3,300000
1700,4,360000
1300,2,250000
2000,3,400000
1600,3,330000

将该文件保存到Pycharm项目的根目录中。这些数据表示每个房产的面积(平方英尺)、卧室数量和价格(美元)。

3.2 加载数据

接下来,编写Python代码来加载并查看数据。确保你的文件路径正确且文件格式无误。

首先,在Pycharm中创建一个新的Python文件(例如,house_price_prediction.py),并编写以下代码:

import pandas as pd# 加载数据集
data = pd.read_csv('house_prices.csv')# 查看数据集的前几行
print(data.head())

这段代码使用Pandas库加载CSV文件中的数据并显示前几行。确保你的house_prices.csv文件路径正确。如果你将文件保存到Pycharm项目的根目录中,那么直接使用文件名即可。如果文件在其他路径中,你需要提供相对或绝对路径。

保存并运行这段代码,你应该会看到数据集的前几行输出:

通过以上步骤,我们成功地将数据集加载到了Pandas DataFrame中,接下来可以对数据进行预处理。

4. 数据预处理

在构建机器学习模型之前,需要对数据进行预处理,以确保数据的质量和模型的性能。数据预处理包括检查缺失值、处理异常值、特征工程等步骤。

4.1 检查缺失值

首先,检查数据集中是否存在缺失值。缺失值会影响模型的性能,因此需要处理。

# 检查是否有缺失值
print(data.isnull().sum())

这段代码会输出每个列中缺失值的数量。如果输出结果为零,表示没有缺失值;否则,需要对缺失值进行处理。

如果存在缺失值,可以选择删除包含缺失值的行,或者用其他值进行填充(例如,平均值、中位数等)。

# 删除缺失值
data = data.dropna()# 或者用平均值填充缺失值
# data.fillna(data.mean(), inplace=True)

4.2 特征和标签分离

接下来,将数据集中的特征和标签分离。特征是用于预测的输入变量,而标签是我们希望预测的输出变量。在这个例子中,square_footagenumber_of_bedrooms是特征,price是标签。

# 特征和标签分离
X = data[['square_footage', 'number_of_bedrooms']]
y = data['price']

X是一个包含特征的DataFrame,而y是一个包含标签的Series。

4.3 数据标准化

在有些情况下,对数据进行标准化处理可以提高模型的性能和收敛速度。标准化是将数据转换为均值为0、标准差为1的形式。

from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
X = scaler.fit_transform(X)

这里我们使用了Scikit-Learn库中的StandardScaler类对特征进行标准化。首先,创建一个StandardScaler对象,然后使用fit_transform方法对特征进行标准化处理。

到此,我们完成了数据预处理的基本步骤,数据集已经准备好用于模型训练。

5. 构建和训练线性回归模型

在预处理完数据后,我们可以开始构建和训练线性回归模型。

5.1 划分训练集和测试集

为了评估模型的性能,我们需要将数据集划分为训练集和测试集。训练集用于训练模型,测试集用于评估模型的泛化能力。

from sklearn.model_selection import train_test_split# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

在这段代码中,我们将20%的数据作为测试集,其余80%的数据作为训练集。random_state参数用于保证结果的可重复性。通过这种划分方式,我们可以在保持数据整体分布一致的前提下,确保训练集和测试集具有相似的特性。

5.2 创建线性回归模型

使用Scikit-Learn库中的LinearRegression类来创建线性回归模型。

from sklearn.linear_model import LinearRegression# 创建线性回归模型
model = LinearRegression()

线性回归模型是一种线性方法,用于拟合线性关系。它假设特征与标签之间存在线性关系,即标签可以通过特征的线性组合来表示。

5.3 训练模型

将训练集的特征和标签传递给模型,进行训练。

# 训练模型
model.fit(X_train, y_train)

训练完成后,模型已经学到了特征和标签之间的关系,可以用来进行预测。

为了得到更准确的结果,我将扩展数据集至600个数据点

6. 评估模型

训练完成后,我们需要评估模型的性能。常用的评估指标包括均方误差(Mean Squared Error, MSE)和决定系数(R²)。

from sklearn.metrics import mean_squared_error, r2_score# 预测测试集
y_pred = model.predict(X_test)# 计算均方误差和R²
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)print(f"Mean Squared Error: {mse}")
print(f"R² Score: {r2}")

  • 均方误差(MSE):度量预测值与真实值之间的平均平方误差,值越小越好。MSE的公式为:
  • 决定系数(R²):度量模型解释变量的比例,取值范围为0到1,值越接近1越好。R²的公式为:

7. 可视化结果

为了更直观地了解模型的表现,我们可以将预测值和真实值进行对比,使用Matplotlib库进行可视化。

import matplotlib.pyplot as plt# 绘制散点图
plt.scatter(y_test, y_pred)
plt.xlabel("Actual Prices")
plt.ylabel("Predicted Prices")
plt.title("Actual vs Predicted Prices")
plt.show()

散点图可以帮助我们观察模型的预测值与真实值之间的关系。如果模型表现良好,散点图中的点将接近对角线,说明预测值与实际值高度相关。

此外,我们还可以绘制残差图(Residual Plot)来进一步评估模型的性能。残差图是实际值与预测值之间差异的图表,有助于检测模型的误差模式和数据中可能存在的异常点。

# 绘制残差图
residuals = y_test - y_pred
plt.scatter(y_pred, residuals)
plt.xlabel("Predicted Prices")
plt.ylabel("Residuals")
plt.title("Residuals vs Predicted Prices")
plt.axhline(y=0, color='r', linestyle='--')
plt.show()

在残差图中,理想情况下,残差应随机分布且均匀分布在0轴的两侧。如果残差图中出现明显的模式或趋势,可能表明模型未能很好地捕捉数据中的关系,或者存在某些特征未被考虑在内。

8. 完整代码

以下是上述步骤的完整代码,整合在一起,方便复制和运行。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler# 加载数据集
data = pd.read_csv('house_prices.csv')# 数据预处理
data = data.dropna()
X = data[['square_footage', 'number_of_bedrooms']]
y = data['price']# 数据标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建和训练模型
model = LinearRegression()
model.fit(X_train, y_train)# 评估模型
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)print(f"Mean Squared Error: {mse}")
print(f"R² Score: {r2}")# 可视化结果
plt.scatter(y_test, y_pred)
plt.xlabel("Actual Prices")
plt.ylabel("Predicted Prices")
plt.title("Actual vs Predicted Prices")
plt.show()# 绘制残差图
residuals = y_test - y_pred
plt.scatter(y_pred, residuals)
plt.xlabel("Predicted Prices")
plt.ylabel("Residuals")
plt.title("Residuals vs Predicted Prices")
plt.axhline(y=0, color='r', linestyle='--')
plt.show()

通过运行这段完整代码,你将能够加载数据、预处理数据、构建和训练线性回归模型、评估模型性能并进行结果可视化。这是一个完整的机器学习工作流,可以帮助你了解和掌握线性回归模型在实际项目中的应用。

9. 结论

在Pycharm中使用线性回归模型时,需要注意以下几点:

  1. 环境设置:确保安装正确版本的Pycharm和必要的Python库。
  2. 数据质量:确保数据集没有缺失值和异常值,且数据类型正确。
  3. 数据标准化:在训练模型之前对特征进行标准化处理。
  4. 数据集划分:合理划分训练集和测试集,确保模型的评估结果公正。
  5. 模型评估:使用适当的评估指标(如MSE和R²)评估模型性能,并确保预测值有效。
  6. 结果可视化:通过散点图和残差图直观展示模型的预测效果和误差分布。

通过遵循这些注意事项,你可以确保在Pycharm中顺利构建和应用线性回归模型进行房价预测。

本文详细介绍了如何在Pycharm中使用线性回归模型进行房价预测。从环境设置、数据导入与预处理、模型构建与训练,到结果评估与可视化,每一步都进行了详细的剖析和代码展示。通过这个案例,希望你能更好地理解线性回归的基本原理和实操步骤,并能够应用到其他类似的预测问题中。

线性回归是机器学习中的基础算法之一,尽管它简单,但在很多实际应用中依然非常有效。通过本文的学习,你不仅掌握了如何在Pycharm中实现线性回归,还提升了对数据科学项目的整体把握能力。如果你有任何问题或建议,欢迎在评论区留言讨论。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/38129.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

弹性力学讲义

弹性力学讲义 1. 基本假设和一些概念2. 应力3. 二维应力状态与摩尔库伦屈服准则 1. 基本假设和一些概念 力学:变形体力学–固体力学和流体力学(连续介质力学) 刚体力学–理论力学(一般力学) 物理受理后:要…

Facebook的投流技巧有哪些?

相信大家都知道Facebook拥有着巨大的用户群体和高转化率,在国外社交推广中的影响不言而喻。但随着Facebook广告的竞争越来越激烈,在Facebook广告上获得高投资回报率也变得越来越困难。IPIDEA代理IP今天就教大家如何在Facebook上投放广告的技巧&#xff0…

python–基础篇–正则表达式–是什么

文章目录 定义一:正则表达式就是记录文本规则的代码定义一:正则表达式是一个特殊的字符序列,用于判断一个字符串是否与我们所设定的字符序列是否匹配,也就是说检查一个字符串是否与某种模式匹配。初识 Python 正则表达式 定义一&a…

D : 合适的顺序

Description 给定 8 个数,如果将它们排成一列,每个数的权值是它与相邻的数之积,求一个排列方式,所有数的权值之和最大,输出该权值和. 例如 13242315 的权值和为 1∗33∗1∗22∗3∗44∗2∗22∗4∗33∗2∗11∗3∗55∗1…

新工具:轻松可视化基因组,部分功能超IGV~

本次分享一个Python基因组数据可视化工具figeno。 figeno擅长可视化三代long reads、跨区域基因组断点视图(multi-regions across genomic breakpoints)、表观组数据(HiC、ATAC-seq和ChIP-seq等)可视化、WGS中的CNV和SV可视化等。…

第四周——单词记忆

deploy 部署 attorney 律师 discrimination 歧视,区别 implicit 含蓄的 disposition 性格,倾向 entail 牵涉 retail 零售 imposing 印象深刻的 壮观的 implication 含义 entrenched 根深蒂固的 perplex 使复杂化 comply 遵守 composed 沉着…

小米平板6系列对比

小米平板6系列目前有4款,分别为6、6 Pro、6 Max、6S Pro。具体对比如下表所示。 小米平板型号66 Pro6 Max6S Pro实物图发布时间2023年4月21日2023年4月21日2023年8月14日2024年2月22 日屏幕大小11英寸11英寸14英寸12.4英寸分辨率2.8K2.8K2.8K3K刷新率144Hz144Hz120…

43 - 部门工资前三高的所有员工(高频 SQL 50 题基础版)

43 - 部门工资前三高的所有员工 # dense_rank 排名selectDepartment,Employee,Salary from(selectd.name as Department,e.name as Employee,e.salary as Salary,(dense_rank() over (partition by d.name order by e.salary desc)) as rankingfrom Employee e left join Depar…

数据库-存储过程,函数与触发器

创建存储过程:create procedure 存储过程名(参数) eg: CREATE PROCEDURE proc1() BEGIN SELECT * FROM user; END; 执行存储过程:call 存储过程名 创建带有参数的存储过程 存储过程的参数有三种: IN:输入参数,也是…

18 学渣的逆袭之路

在小学阶段(本篇特指五年级,一到四年级随便学学就可以逆袭90分,六年级难度飙升),无论你的分数怎么低,只要有一颗上进的心,就绝对可以逆袭95! 在本篇文章,我将会讲解“对于…

【前端那些事】Node.js的安装并配置镜像源

1、官网下载地址 Download Node.js 一步一步点击安装即可,可自定义安装目录 2、配置镜像源 # 设置淘宝镜像源 npm config set registry https://registry.npmmirror.com# 查看使用的镜像源 npm config get registry 如果需要恢复为npm默认的官方源&#xf…

intellij idea安装R包ggplot2报错问题求解

1、intellij idea安装R包ggplot2问题 在我上次解决图形显示问题后,发现安装ggplot2包时出现了问题,这在之前高版本中并没有出现问题, install.packages(ggplot2) ERROR: lazy loading failed for package lifecycle * removing C:/Users/V…

java:aocache的单实例缓存(一)

上一篇博客《java:aocache:基于aspectJ实现的方法缓存工具》介绍了aocache的基本使用, 介绍AoCacheable注解时说过,AoCacheable可以定义在构造方法上,定义在构造方法,该构建方法就成了单实例模式。 也就是说,只要构建…

Java实现按高度或宽度等比压缩图片尺寸

要实现一个能够按高度或宽度等比压缩图片并返回InputStream的Java方法,你需要先计算图片的原始宽高比,然后根据目标尺寸(宽度或高度)计算出等比缩放后的另一个维度。以下是一个示例代码: import javax.imageio.ImageI…

理解cpu对地址的操作

在硬件编程中,外设寄存器被映射到内存或输入/输出(I/O)的地址空间上,这种映射使得CPU能够通过读写这些地址来控制外设。这种机制通常被称为内存映射I/O(MMIO)或端口映射I/O(PMIO),其中MMIO更为常见。以GPIO(通用输入输出)为例,下面是这个过程的一般性描述: MMIO(…

【云原生】MiniKube部署Kubernetes最小化集群

MiniKube安装Kubernetes集群(一步到位) 文章目录 MiniKube安装Kubernetes集群(一步到位)资源列表基础环境一、环境配置1.1、更新系统1.2、安装Docker1.3、配置Docker加速器 二、部署MiniKube2.1、安装kubectl2.2、安装MiniKube2.2…

深入了解Qt 控件:Display Widgets部件(1) 以及 QT自定义控件(电池)

QT自定义控件(电池) 在线调色板Qt之CSS专栏Chapter1 QT自定义控件(电池)Chapter2 Qt教程 — 3.5 深入了解Qt 控件:Display Widgets部件(1)1 Display Widgets简介2 如何使用Display Widgets部件 Chapter3 Qt自定义控件电池组件使用前言一、最基…

“论大数据处理架构及其应用”高分范文,软考高级,系统架构设计师

论文真题 大数据处理架构是专门用于处理和分析巨量复杂数据集的软件架构。它通常包括数据收集、存储、处理、分析和可视化等多个层面,旨在从海量、多样化的数据中提取有价值的信息。Lambda架构是大数据平台里最成熟、最稳定的架构,它是一种将批处理和流…

springboot 3.x相比之前版本有什么区别

Spring Boot 3.x相比之前的版本(尤其是Spring Boot 2.x),主要存在以下几个显著的区别和新特性: Java版本要求: Spring Boot 3.x要求至少使用Java 17作为最低版本,同时已经通过了Java 19的测试,…

第十一章 Qt的模型视图

目录 一、模型/视图的原理 1、原理分析 2、模型(数据模型) 3、视图 4、代理 二、文件系统模型 1、项目练习 2、UI 设计 3、代码实现 三、字符串链表模型 QStringListModel 1、项目效果 2、项目实现 四、标准项模型(QStandardItemModel) 1、模型分析 2、项目效…