【Matlab 六自由度机器人】机器人动力学之推导拉格朗日方程(附MATLAB机器人动力学拉格朗日方程推导代码)

【Matlab 六自由度机器人】机器人动力学概述

  • 近期更新
  • 前言
  • 正文
    • 一、拉格朗日方程的推导
      • 1. 单自由度系统
      • 2. 单连杆机械臂系统
      • 3. 双连杆机械臂系统
    • 二、MATLAB实例推导
      • 1. 机器人模型的建立
      • 2. 动力学代码
  • 总结
  • 参考文献

近期更新

【汇总】

【Matlab 六自由度机器人】系列文章汇总  \fcolorbox{green}{aqua}{【Matlab 六自由度机器人】系列文章汇总 } Matlab 六自由度机器人】系列文章汇总 

【主线】

运动学 \color{red}运动学 运动学

  1. 定义标准型及改进型D-H参数,建立机器人模型。
  2. 运动学正解
  3. 基于蒙特卡罗方法(Monte Carlo Method)构建机器人工作空间

动力学 \color{red}动力学 动力学
(待补充)

【补充说明】

  1. 关于灵活工作空间与可达工作空间的理解
  2. 关于改进型D-H参数(modified Denavit-Hartenberg)的详细建立步骤
  3. 关于旋转的参数化(欧拉角、姿态角、四元数)的相关问题
  4. 关于双变量函数atan2(x,y)的解释
  5. 关于机器人运动学反解的有关问题

前言

本篇对机器人动力学进行一个概述。
之前谈到的运动学方程仅描述了机器人的运动过程,没有考虑到产生运动的力和扭矩,而动力学方程能描述力和运动之间的关系,因此我们在此引入动力学的概念。

本人在读研期间仅在机器人运动学的基础上完成论文的撰写,有些遗憾未能将机器人动力学应用到文章之中,在此写下机器人动力学的概述以及学习过程中遇到的问题和解决思路。


以下是本篇文章正文内容

分析机器人操作的动态数学模型,主要采用下列两种理论

  1. 动力学基本理论,包括牛顿欧拉方程。
  2. 拉格朗日力学,特别是二阶拉格朗日方程。

第一个方法:牛顿—欧拉方程即力的动态平衡法。当用此法时,需从运动学出发求得加速度,并消去各内作用力。对于较复杂的系统,此种分析方法十分复杂与麻烦。
第二个方法:拉格朗日方程即拉格朗日功能平衡法,也称为欧拉—拉格朗日方程,它只需要速度而不必求内作用力。因此,这是一种直截了当和简便的方法。

在本篇文章中主要采用拉格朗日方程来分析和求解机械手的动力学问题。

正文

一、拉格朗日方程的推导

1. 单自由度系统

我们以图中所示的单自由度系统为例,来说明如何从牛顿第二定律推导出拉格朗日方程。图中的圆点为带有质量的一个粒子,下面称为质点。该质点受到重力 g g g的效果和拉力 f f f的效果。
Alt

质量为 m m m的粒子受到限制,只能在垂直方向移动,这就构成了一个单自由度系统。 重力 m g mg mg向下作用, 外力 f f f则向上作用。

根据牛顿第二定律,这个系统中的质点的运动方程为:
m a = f − m g ⟹ m y ¨ = f − m g ma=f-mg\implies m\ddot{y}_{}^{}=f-mg ma=fmgmy¨=fmg
左侧的 m y ¨ m\ddot{y}_{}^{} my¨也可以用以下方程推出
m y ¨ = d d t ( m y ˙ ) = d d t ∂ ∂ y ˙ ( 1 2 m y ˙ 2 ) = d d t ( ∂ K ∂ y ˙ ) m\ddot{y}_{}^{}= \frac{\mathrm{d}}{\mathrm{d} t} \left(m\dot{y}\right) = \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial {}}{\partial \dot{y}} \left(\frac{1}{2}m\dot{y}^2\right)= \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{\partial \mathcal{K}}{\partial \dot{y}}\right) my¨=dtd(my˙)=dtdy˙(21my˙2)=dtd(y˙K)
注: m y ˙ 可以写作 ∂ ∂ y ˙ ( 1 2 m y ˙ 2 ) m\dot{y}可以写作\frac{\partial {}}{\partial \dot{y}} \left(\frac{1}{2}m\dot{y}^2\right) my˙可以写作y˙(21my˙2),即 1 2 m y ˙ 2 \frac{1}{2}m\dot{y}^2 21my˙2 y y y进行求偏导。

其中,动能 K = 1 2 m y ˙ 2 \mathcal{K}= \frac{1}{2} m\dot{y}^2 K=21my˙2

类似上面的方程,我们可以将重力表达为:
m g = ∂ ∂ y ( m g y ) = ∂ P ∂ y mg=\frac{\partial }{\partial {y}}\left(mgy\right)= \frac{\partial \mathcal{P}}{\partial {y}} mg=y(mgy)=yP
其中,重力势能 P = m g y \mathcal{P}= mgy P=mgy

定义函数 L \mathcal{L} L,它是系统的动能和势能之差,也称为系统的拉格朗日算子
L = K − P = 1 2 m y ˙ 2 − m g y \mathcal{L}= \mathcal{K}- \mathcal{P}=\frac{1}{2}m\dot{y}^2-mgy L=KP=21my˙2mgy
① L 对 y ˙ 求偏导,可得到 ∂ L ∂ y ˙ = ∂ K ∂ y ˙ ① \mathcal{L}对\dot{y}求偏导,可得到\frac{\partial { \mathcal{L}}}{\partial \dot{y}}=\frac{\partial { \mathcal{K}}}{\partial \dot{y}} Ly˙求偏导,可得到y˙L=y˙K

② L 对 y ˙ 求偏导,可得到 ∂ L ∂ y = − ∂ P ∂ y ⟹ ∂ P ∂ y = − ∂ L ∂ y ② \mathcal{L}对\dot{y}求偏导,可得到\frac{\partial { \mathcal{L}}}{\partial {y}}=-\frac{\partial { \mathcal{P}}}{\partial {y}} \implies \frac{\partial { \mathcal{P}}}{\partial {y}}=-\frac{\partial { \mathcal{L}}}{\partial {y}} Ly˙求偏导,可得到yL=yPyP=yL

那么对上式的 m y ¨ = f − m g m\ddot{y}_{}^{}=f-mg my¨=fmg可以写作如下公式
d d t ∂ L ∂ y ˙ = f − ( − ∂ L ∂ y ) ⟹ f = d d t ∂ L ∂ y ˙ − ∂ L ∂ y \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial { \mathcal{L}}}{\partial \dot{y}}=f- \left(-\frac{\partial \mathcal{L}}{\partial {y}}\right) \implies f=\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial { \mathcal{L}}}{\partial \dot{y}}-\frac{\partial \mathcal{L}}{\partial {y}} dtdy˙L=f(yL)f=dtdy˙LyL
至此,单自由度系统的拉格朗日方程就推导出来了,方程如下:
f = d d t ∂ L ∂ y ˙ − ∂ L ∂ y f=\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial { \mathcal{L}}}{\partial \dot{y}}-\frac{\partial \mathcal{L}}{\partial {y}} f=dtdy˙LyL

下面是建立拉格朗日函数的一般步骤
首先写出系统的动能和势能,并以广义坐标 ( q 1 , ⋯ , q n ) \left(q_{1}, \cdots, q_{n}\right) (q1,,qn) 的形式来表示,其中 n n n 是系统的自由度数目;然后,根据下述公式来计算 n − n^{-} n自由度系统的运动方程
d d t ∂ L ∂ q ˙ k − ∂ L ∂ q k = τ k , k = 1 , ⋯ , n \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{k}}-\frac{\partial \mathcal{L}}{\partial q_{k}}=\tau_{k}, \quad k=1, \cdots, n dtdq˙kLqkL=τk,k=1,,n
其中, τ k \tau_{k} τk 是与广义坐标 q k q_{k} qk 相关的广义力。
在上述单自由度系统的例子中,变量 y y y 作为广义坐标。欧拉-拉格朗日方程不仅可以导出一组耦合的二阶常微分方程,它还提供了一种 等同于通过牛顿第二定律得到动力学方程的构造方法。然而,正如我们将要看到的那样,对于诸如多连杆机器人等复杂系统,使用拉格朗日方法更为有利。

下面介绍单连杆机械臂系统双连杆机械臂系统的拉格朗日方程

2. 单连杆机械臂系统

如下图中所示的单连杆机器人,它包括一个刚性连杆,该连杆通过齿轮系连接到直流电机。令 θ l \theta_l θl θ m \theta_m θm分别表示连杆和电机轴的转动角度。那么 θ m = r θ l \theta_m=r\theta_l θm=rθl,其中 r : 1 r: 1 r:1为齿轮变速比。如果连杆一端直接接在电机的旋转轴上,那么 r = 1 r=1 r=1。连杆转角和电机轴转角之间的代数关系表明该系统只有一个自由度,因此我们可以将 θ l \theta_l θl θ m \theta_m θm作为广义坐标。
请添加图片描述

单连杆机器人:电机输出轴通过齿轮系耦连到连杆的转动轴,齿轮系放大了电机扭矩并降低了电机转速。

在此选用 θ ℓ \theta_\ell θ作为广义坐标
系统的动能可以表示为 θ ℓ \theta_\ell θ的函数,其表示如下所示
K = 1 2 J m θ ˙ m 2 + 1 2 J ℓ θ ˙ ℓ 2 = 1 2 J m r 2 θ ˙ ℓ 2 + 1 2 J ℓ θ ˙ ℓ 2 = 1 2 ( r 2 J m + J ℓ ) θ ˙ ℓ 2 \mathcal{K} =\frac{1}{2}J_{m} \dot{\theta}_{m}^{2}+\frac{1}{2} J_{\ell} \dot{\theta}_{\ell}^{2} =\frac{1}{2}J_{m}r^2 \dot{\theta}_{\ell}^{2}+\frac{1}{2} J_{\ell} \dot{\theta}_{\ell}^{2} =\frac{1}{2}\left(r^{2} J_{m}+J_{\ell}\right) \dot{\theta}_{\ell}^{2} K=21Jmθ˙m2+21Jθ˙2=21Jmr2θ˙2+21Jθ˙2=21(r2Jm+J)θ˙2
其中, J m , J ℓ J_m,J_\ell Jm,J分别为电机和连杆的转动惯量。系统的势能如下所示
P = M g ℓ ( 1 − cos ⁡ θ ℓ ) \mathcal{P}=Mg\ell\left(1-\cos \theta_{\ell}\right) P=Mg(1cosθ)
其中, M M M 是连杆的总体质量, ℓ \ell 是关节轴线与连杆质心之间的距离。定义 J = r 2 J m + J ℓ J=r^{2} J_{m}+J_{\ell} J=r2Jm+J,拉格朗日算子 L \mathcal{L} L如下
L = 1 2 J θ ˙ ℓ 2 − M g ℓ ( 1 − cos ⁡ θ ℓ ) \mathcal{L}=\frac{1}{2} J \dot{\theta}_{\ell}^{2}-M g \ell\left(1-\cos \theta_{\ell}\right) L=21Jθ˙2Mg(1cosθ)
将上述表达式代人到公式 d d t ∂ L ∂ q ˙ k − ∂ L ∂ q k = τ k , \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{k}}-\frac{\partial \mathcal{L}}{\partial q_{k}}=\tau_{k}, dtdq˙kLqkL=τk,中,其中 n = 1 n=1 n=1,广义坐标为 θ ℓ \theta_{\ell} θ,得到下列运动方程
J θ ¨ ℓ + M g ℓ sin ⁡ θ ℓ = τ ℓ J \ddot{\theta}{ }_{\ell}+M g \ell \sin \theta_{\ell}=\tau_{\ell} Jθ¨+Mgsinθ=τ
广义力 τ ℓ \tau_{\ell} τ 表示那些无法从势函数推导出的外力和外力矩。对于这个例子, τ ℓ \tau_{\ell} τ 包括反映 到连杆上的电机输入力矩 u = r τ m u=r \tau_{m} u=rτm,以及 (非保守) 阻尼力矩 B m θ ˙ m B_{m} \dot{\theta}_{m} Bmθ˙m B ℓ θ ˙ 1 B_{\ell} \dot{\theta}_{1} Bθ˙1 。将电机阻尼反映到连杆上,得出
τ ℓ = u − B θ ˙ ℓ ⟹ u = τ ℓ + B θ ˙ ℓ \tau_{\ell}=u-B \dot{\theta}_{\ell} \implies u=\tau_{\ell}+B \dot{\theta}_{\ell} τ=uBθ˙u=τ+Bθ˙
其中, B = r B m + B ℓ B=r B_{m}+B_{\ell} B=rBm+B 。因此,该系统完整的动力学表达式为
u = J θ ¨ ℓ + B θ ˙ ℓ + M g ℓ sin ⁡ θ ℓ u=J \ddot{\theta}_{\ell}+B \dot{\theta}_{\ell}+M g \ell \sin \theta_{\ell} u=Jθ¨+Bθ˙+Mgsinθ

3. 双连杆机械臂系统

下面推导双连杆机械臂系统的动能和位能,如下图。这种运动机构具有开式运动链,与复摆运动有许多相似之处。

请添加图片描述

图中
T 1 T_{1} T1 T 2 T_{2} T2 为转矩;

m 1 m_{1} m1 m 2 m_{2} m2为连杆1和连杆2的质量,该连杆的质量以连杆末端的质点来进行表示;
d 1 d_{1} d1 d 2 d_{2} d2分别为两连杆的长度;
θ 1 \theta_{1} θ1 θ 2 \theta_{2} θ2为广义坐标;
g g g为重力加速度。

先计算连杆1的动能 K 1 {K_1} K1和动能 P 1 {P_1} P1

K 1 = 1 2 m 1 v 1 2 v 1 = d 1 θ ˙ 1 P 1 = m 1 g h h 1 = − d 1 cos ⁡ θ 1 \begin{aligned} {K_1}&=\frac{1}{2} m_{1} v_{1}^{2} \\ v_{1}&=d_{1} \dot{\theta}_{1} \\ {P_1}&=m_1gh \\ h_1&=-d_{1} \cos \theta_{1} \end{aligned} K1v1P1h1=21m1v12=d1θ˙1=m1gh=d1cosθ1
推导得
K 1 = 1 2 m 1 d 1 2 θ ˙ 1 2 P 1 = − m 1 g d 1 cos ⁡ θ 1 \begin{aligned} K_{1}&=\frac{1}{2} m_{1} d_{1}^{2} \dot{\theta}_{1}^{2} \\ P_{1}&=-m_{1} g d_{1} \cos \theta_{1} \end{aligned} K1P1=21m1d12θ˙12=m1gd1cosθ1
再求连杆 2 的动能 K 2 K_{2} K2 和位能 P 2 P_{2} P2
K 2 = 1 2 m 2 v 2 2 P 2 = m g y 2 \begin{aligned} K_{2}&=\frac{1}{2} m_{2} v_{2}^{2}\\ P_{2}&=m g y_{2} \end{aligned} K2P2=21m2v22=mgy2式中
v 2 2 = x ˙ 2 2 + y ˙ 2 2 x 2 = d 1 sin ⁡ θ 1 + d 2 sin ⁡ ( θ 1 + θ 2 ) y 2 = − d 1 cos ⁡ θ 1 − d 2 cos ⁡ ( θ 1 + θ 2 ) x ˙ 2 = d 1 cos ⁡ θ 1 θ ˙ 1 + d 2 cos ⁡ ( θ 1 + θ 2 ) ( θ ˙ 1 + θ ˙ 2 ) y ˙ 2 = d 1 sin ⁡ θ 1 θ ˙ 1 + d 2 sin ⁡ ( θ 1 + θ 2 ) ( θ ˙ 1 + θ ˙ 2 ) \begin{aligned} v_{2}^{2}&=\dot{x}_{2}^{2}+\dot{y}_{2}^{2} \\ x_{2}&=d_{1} \sin \theta_{1}+d_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\ y_{2}&=-d_{1} \cos \theta_{1}-d_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\ \dot{x}_{2}&=d_{1} \cos \theta_{1} \dot{\theta}_{1}+d_{2} \cos \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\ \dot{y}_{2}&=d_{1} \sin \theta_{1} \dot{\theta}_{1}+d_{2} \sin \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \end{aligned} v22x2y2x˙2y˙2=x˙22+y˙22=d1sinθ1+d2sin(θ1+θ2)=d1cosθ1d2cos(θ1+θ2)=d1cosθ1θ˙1+d2cos(θ1+θ2)(θ˙1+θ˙2)=d1sinθ1θ˙1+d2sin(θ1+θ2)(θ˙1+θ˙2)
于是可求得
v 2 2 = d 1 2 θ ˙ 1 2 + d 2 2 ( θ ˙ 1 2 + 2 θ ˙ 1 θ ˙ 2 + θ ˙ 2 2 ) + 2 d 1 d 2 cos ⁡ θ 2 ( θ ˙ 1 2 + θ ˙ 1 θ ˙ 2 ) \boldsymbol{v}_{2}^{2}=d_{1}^{2} \dot{\theta}_{1}^{2}+d_{2}^{2}\left(\dot{\theta}_{1}^{2}+2 \dot{\theta}_{1} \dot{\theta}_{2}+\dot{\theta}_{2}^{2}\right)+2 d_{1} d_{2} \cos \theta_{2}\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{1} \dot{\theta}_{2}\right) v22=d12θ˙12+d22(θ˙12+2θ˙1θ˙2+θ˙22)+2d1d2cosθ2(θ˙12+θ˙1θ˙2)
以及
K 2 = 1 2 m 2 d 1 2 θ ˙ 1 2 + 1 2 m 2 d 2 2 ( θ ˙ 1 + θ ˙ 2 ) 2 + m 2 d 1 d 2 cos ⁡ θ 2 ( θ ˙ 1 2 + θ ˙ 1 θ ˙ 2 ) P 2 = − m 2 g d 1 cos ⁡ θ 1 − m 2 g d 2 cos ⁡ ( θ 1 + θ 2 ) \begin{gathered} K_{2}&=\frac{1}{2} m_{2} d_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} d_{2}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+m_{2} d_{1} d_{2} \cos \theta_{2}\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{1} \dot{\theta}_{2}\right) \\ P_{2}&=-m_{2} g d_{1} \cos \theta_{1}-m_{2} g d_{2} \cos \left(\theta_{1}+\theta_{2}\right) \end{gathered} K2P2=21m2d12θ˙12+21m2d22(θ˙1+θ˙2)2+m2d1d2cosθ2(θ˙12+θ˙1θ˙2)=m2gd1cosθ1m2gd2cos(θ1+θ2)
这样, 二连杆机械手系统的总动能和总位能分别为
K = K 1 + K 2 = 1 2 ( m 1 + m 2 ) d 1 2 θ ˙ 1 2 + 1 2 m 2 d 2 2 ( θ ˙ 1 + θ ˙ 2 ) 2 + m 2 d 1 d 2 cos ⁡ θ 2 ( θ ˙ 1 2 + θ ˙ 1 θ ˙ 2 ) P = P 1 + P 2 = − ( m 1 + m 2 ) g d 1 cos ⁡ θ 1 − m 2 g d 2 cos ⁡ ( θ 1 + θ 2 ) \begin{aligned} K &=K_{1}+K_{2} \\ &=\frac{1}{2}\left(m_{1}+m_{2}\right) d_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} d_{2}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+m_{2} d_{1} d_{2} \cos \theta_{2}\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{1} \dot{\theta}_{2}\right) \\ P &=P_{1}+P_{2} \\ &=-\left(m_{1}+m_{2}\right) g d_{1} \cos \theta_{1}-m_{2} g d_{2} \cos \left(\theta_{1}+\theta_{2}\right) \end{aligned} KP=K1+K2=21(m1+m2)d12θ˙12+21m2d22(θ˙1+θ˙2)2+m2d1d2cosθ2(θ˙12+θ˙1θ˙2)=P1+P2=(m1+m2)gd1cosθ1m2gd2cos(θ1+θ2)

二、MATLAB实例推导

1. 机器人模型的建立

  1. 根据文章上述的双连杆机械臂对其进行建模,具体建模方法可参阅以下文章:
  • 定义标准型及改进型D-H参数建立机器人模型(附MATLAB建模代码)
  • 【Matlab 六自由度机器人】关于改进型D-H参数(modified Denavit-Hartenberg)的详细建立步骤

单杆机械臂系统代码如下:

%% 单杆机械臂系统
clc
clear
close all
warning off%% MOD-DH参数
d1 = 0;
d2 = 100;
a1 = 0;
a2 = 0;
alpha1 = pi/2;
alpha2 = 0;
%       theta  d    a    alpha  offset(关节变量偏移量)
L(1)=Link([0   d1   a1   alpha1   0   ],'modified');
L(2)=Link([0   d2   a2   alpha2   0   ],'modified');
Single_Robot = SerialLink(L,'name','SingleRobot');
Single_Robot.teach()
%限制机器人的关节空间
theta1min = -180;        theta1max = 180;
theta2min = -180;        theta2max = 180;
L(1).qlim = [theta1min theta1max]*pi/180;
L(2).qlim = [theta2min theta2max]*pi/180;

双连杆机械臂系统代码如下:

%% 双连杆机械臂系统
clc
clear
close all
warning off%% MOD-DH参数
d1 = 0;
d2 = 0;
d3 = 0;
a1 = 0;
a2 = 100;
a3 = 100;
alpha1 = pi/2;
alpha2 = 0;
alpha3 = 0;
%       theta  d    a    alpha  offset(关节变量偏移量)
L(1)=Link([0   d1   a1   alpha1   0   ],'modified');
L(1).offset = -pi/2;
L(2)=Link([0   d2   a2   alpha2   0   ],'modified');
L(3)=Link([0   d3   a3   alpha3   0   ],'modified');
Double_Robot = SerialLink(L,'name','SingleRobot');
Double_Robot.display()
Double_Robot.teach()
%限制机器人的关节空间
theta1min = -180;        theta1max = 180;
theta2min = -180;        theta2max = 180;
theta3min = -180;        theta3max = 180;
L(1).qlim = [theta1min theta1max]*pi/180;
L(2).qlim = [theta2min theta2max]*pi/180;
L(3).qlim = [theta3min theta3max]*pi/180;

接下来对其进行运动学上的轨迹规划:

  1. 对于单杆系统,其轨迹规划如下:
n = 1:100;
q0 = [0 0];
q1 = [30 30];% 由q0移动到q1
[q,qd,qdd] = jtraj(q0,q1,n);figure(2)
subplot(3,1,1)
plot(n,q)
subplot(3,1,2)
plot(n,qd)
subplot(3,1,3)
plot(n,qdd)

其效果如下图:
请添加图片描述

  1. 对于双连杆系统
n = 1:100;
q0 = [0 0 0];
q1 = [30 60 90];[q,qd,qdd] = jtraj(q0,q1,n);figure(2)
subplot(3,1,1)
plot(n,q)
subplot(3,1,2)
plot(n,qd)
subplot(3,1,3)
plot(n,qdd)

其效果如下图:
请添加图片描述

往后会对关节空间轨迹规划 j t r a j ( ) 函数 jtraj()函数 jtraj()函数笛卡尔空间轨迹规划 c t r a j ( ) 函数 ctraj()函数 ctraj()函数 进行单独篇章的撰写和探讨。

至此,运动学的前期准备已经完毕,下面进行机器人动力学 拉格朗日方程的推导。

2. 动力学代码

使用robot.dyn()函数查看建立的机器人的动力学参数

代码如下:

% 查看robot机器人所有的连杆的动力学参数
robot.dyn;
% 查看robot机器人第n根连杆的动力学参数
robot.dyn(n);% 对Single_Robot进行动力学参数的设置

总结

本篇对机器人动力学进行一个概述。
之前谈到的运动学方程仅描述了机器人的运动过程,没有考虑到产生运动的力和扭矩,而动力学方程能描述力和运动之间的关系,因此我们在此引入动力学的概念。
第一章是机器人动力学之推导拉格朗日方程的内容,本文详细介绍了如何理解拉格朗日方程以及如何进行推导,介绍了如何求出机构的动能及位能。
第二章是拉格朗日方程代码的实现。

参考文献

  1. 机器人学、机器视觉与控制:MATLAB算法基础
  2. 机器人学
  3. 机器人建模和控制
  4. MATLAB机器人工具箱(四)动力学
  5. MATLAB机器人工具箱【3】—— 动力学相关函数及用法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/35156.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM专题十:JVM中的垃圾回收机制

在JVM专题九:JVM分代知识点梳理中,我们主要介绍了JVM为什么采用分代算法,以及相关的概念,本篇我们将详细拆分各个算法。 垃圾回收的概念 垃圾回收(Garbage Collection,GC)确实是计算机编程中的…

【自然语言处理系列】探索NLP:使用Spacy进行分词、分句、词性标注和命名实体识别,并以《傲慢与偏见》与全球恐怖活动两个实例文本进行分析

本文深入探讨了scaPy库在文本分析和数据可视化方面的应用。首先,我们通过简单的文本处理任务,如分词和分句,来展示scaPy的基本功能。接着,我们利用scaPy的命名实体识别和词性标注功能,分析了Jane Austen的经典小说《傲…

discuz插件之优雅草超级列表互动增强v1.2版本更新

https://doc.youyacao.com/9/2142 v1.2更新 discuz插件之优雅草超级列表互动增强v1.2版本更新 [title]20220617 v1.2发布[/title] 增加了对php8的支持 增加了 对discuz3.5的支持

RocketMQ源码学习笔记:Broker启动流程

这是本人学习的总结,主要学习资料如下 马士兵教育rocketMq官方文档 目录 1、Broker启动流程2、一些重要的类2.1、MappedFile2.2、MessgeStore2.3、MessageStore的加载启动流程 3、技术亮点3.1、 内存映射3.1.1、简介3.1.2、源码 1、Broker启动流程 Broker启动流程…

RabbitMQ中lazyqueue队列

lazyqueue队列非常强悍 springboot注解方式开启 // 使用注解的方式lazy.queue队列模式 非常GoodRabbitListener(queuesToDeclare Queue(name "lazy.queue",durable "true",arguments Argument(name "x-queue-mode",value "lazy&…

3.蓝牙模块HC-08

目录 一.简介​编辑 二.主要参数 三.模块引脚说明 四、LED指示灯状态 五.AT指令 5.1AT指令重点 5.2 AT指令注意点 5.3 AT指令集 六.AT常用指令 6.1 测试指令 AT 6.2 查询当前参数ATRX 6.3设置主从模式 ATROLE 6.4设置蓝牙模式 ATNAME 6.5 设置波特率 …

YOLOv5改进(八)--引入Soft-NMS非极大值抑制

文章目录 1、前言2、各类NMS代码实现2.1、general.py 3、各类NMS实现3.1、Soft-NMS3.2、GIoU-NMS3.3、DIoU-NMS3.4、CIoU-NMS3.5、EIoU-NMS 4、目标检测系列文章 1、前言 目前yolov5使用的是NMS进行极大值抑制,本篇文章是要将各类NMS添加到yolov5中,同时…

6.25作业

1.整理思维导图 2.终端输入两个数,判断两数是否相等,如果不相等,判断大小关系 #!/bin/bash read num1 read num2 if [ $num1 -eq $num2 ] then echo num1num2 elif [ $num1 -gt $num2 ] then echo "num1>num2" else echo &quo…

200.回溯算法:子集||(力扣)

class Solution { public:vector<int> res; // 当前子集vector<vector<int>> result; // 存储所有子集void backtracing(vector<int>& nums, int index, vector<bool>& used) {result.push_back(res); // 将当前…

【嵌入式Linux】<总览> 进程间通信(更新中)

文章目录 前言 一、管道 1. 概念 2. 匿名管道 3. 有名管道 二、内存映射区 1. 概念 2. mmap函数 3. 进程间通信&#xff08;有血缘关系&#xff09; 4. 进程间通信&#xff08;没有血缘关系&#xff09; 5. 拷贝文件 前言 在文章【嵌入式Linux】&#xff1c;总览&a…

浏览器断点调试(用图说话)

浏览器断点调试&#xff08;用图说话&#xff09; 1、开发者工具2、添加断点3、查看变量值 浏览器断点调试 有时候我们需要在浏览器中查看 html页面的js中的变量值。1、开发者工具 打开浏览器的开发者工具 按F12 &#xff0c;没反应的话按FnF12 2、添加断点 3、查看变量值

清理占道经营商贩自砸西瓜?智慧城管AI视频方案助力城市街道管理

一、背景分析 近日有新闻报道&#xff0c;在山西太原&#xff0c;城管凌晨3时许查处商贩占道经营&#xff0c;商贩将西瓜砸碎一地&#xff0c;引起热议。据悉&#xff0c;事件发生的五龙口街系当地主要街道&#xff0c;来往车辆众多。该商贩长期在该地段占道经营&#xff0c;影…

昇思25天学习打卡营第2天|快速入门

快速入门 操作步骤1.引入依赖包2.下载Mnist数据集3.划分训练集和测试集4.数据预处理5.网络构建6.模型训练7.保存模型8.加载模型9.模型预测 今天通过昇思大模型平台AI实验室提供的在线Jupyter工具&#xff0c;快速入门MindSpore。 目标&#xff1a;通过MindSpore的API快速实现一…

云计算 | 期末梳理(下)

1.模运算 2. 拓展欧几里得算法 3.扩散和混淆、攻击的分类 香农的贡献:定义了理论安全性,提出扩散和混淆原则,奠定了密码学的理论基础。扩散:将每一位明文尽可能地散布到多个输出密文中去,以更隐蔽明文数字的统计特性。混淆:使密文的统计特性与明文密钥之间的关系尽量复杂…

深入解析直播带货系统源码:短视频商城APP开发全攻略

本篇文章&#xff0c;小编将深入解析直播带货系统的源码&#xff0c;并为开发短视频商城APP提供全攻略&#xff0c;助力开发者打造高效、稳定的带货平台。 一、直播带货系统概述 直播带货系统主要由直播模块、商品管理模块、订单处理模块、用户管理模块、以及支付模块等组成。…

Ubuntu20.04使用Samba

目录 一、Samba介绍 Samba 的主要功能 二、启动samba 三、主机操作 四、Ubuntu与windows系统中文件互联 五、修改samba路径 一、Samba介绍 Samba 是一个开源软件套件&#xff0c;用于在 Linux 和 Unix 系统上实现 SMB&#xff08;Server Message Block&#xff09;协议…

速卖通自养号测评:安全高效的推广手段

在速卖通平台上&#xff0c;卖家们常常寻求各种方法来提升商品的曝光、转化率和店铺权重。其中&#xff0c;自养号测评作为一种低成本、高回报的推广方式&#xff0c;备受关注。然而&#xff0c;若操作不当&#xff0c;也可能带来风险。以下是如何安全有效地进行自养号测评的指…

VS Code 使用 Makefile 运行 CPP项目

Installing the MinGW-w64 toolchainCMake Toolsmakelist.txt报错 1报错 2报错 3生成了 Makefile &#xff0c;如何使用 make 命令 Installing the MinGW-w64 toolchain 参见文档 将 GCC 与 MinGW 结合使用 CMake Tools 参见文档 Linux 上的 CMake 工具入门 CMake 的使用 …

关于Pycharm右下角不显示解释器interpreter的问题解决

关于Pycharm右下角不显示解释器interpreter的问题 在安装新的Pycharm后&#xff0c;发现右下角的 interpreter 的选型消失了&#xff1a; 觉得还挺不习惯的&#xff0c;于是网上找解决办法&#xff0c;无果。 自己摸索了一番后&#xff0c;发现解决办法如下&#xff1a; 勾…

37岁,被裁员,失业三个月,被面试官嫌弃“太水”:就这也叫10年以上工作经验?

今年部门要招两个自动化测试&#xff0c;这几个月我面试了几十位候选人。发现一个很奇怪的现象&#xff0c;面试中一问到元素定位、框架api、脚本编写之类的&#xff0c;很多候选人都对答如流。但是一问到实际项目&#xff0c;比如“项目中UI自动化和接口自动化如何搭配使用&am…