基于昇腾AI 使用AscendCL实现垃圾分类和视频物体分类应用

现如今,人工智能迅猛发展,AI赋能产业发展的速度正在加快,“AI+”的需求蜂拥而来,但AI应用快速落地的过程中仍存在很大的挑战:向下需要适配的硬件,向上需要完善的技术支持,两者缺一不可。

基于此,昇腾推出了系列化行业SDK和参考设计,通过把千行百业细分场景的开发经验和行业知识沉淀下来、水平复制,从而大幅度降低门槛、简化开发、提升效率。而信迈科技是昇腾重要的APN合作伙伴、金牌分销商,具有较强的自主设计硬件能力,双方紧密携手,打造软硬结合、更符合行业需求的算力底座,赋能产业快速、低成本数字化转型。

使用AscendCL快速实现垃圾分类和视频物体分类应用的案例,帮助开发者降低学习成本、简化开发流程,缩短项目周期!

  案例概述

①垃圾分类应用:基于AscendCL,使用实现对图片中的垃圾类别进行检测,并输出有检测类别的图片;

②视频物体分类应用:基于GoogLeNet分类网络,使用实现对视频帧中的物体进行识别分类,并将分类的结果展示在PC网页上。

  案例说明

本案例底层原理逻辑请参考华为昇腾AscendCL <垃圾分类>,和<视频物体分类>案例。

  前置条件

图片

基于实现垃圾分类应用

1

环境安装

注意事项:

➢以下操作以普通用户HwHiAiUser安装CANN包为例说明,推荐使用root用户进行操作,如果是root用户,请将安装准备中所有的${HOME}修改为/usr/local。

➢推荐按照本文档路径进行操作,如安装在自定义路径可能会导致环境冲突等问题

1、配置相关环境

# 以安装用户在任意目录下执行以下命令,打开.bashrc文件。vi ~/.bashrc  # 在文件最后一行后面添加如下内容。source ${HOME}/Ascend/ascend-toolkit/set_env.shsource /home/work/MindX_SDK/mxVision-5.0.RC3/set_env.sh
export CPU_ARCH=`arch`export THIRDPART_PATH=${HOME}/Ascend/thirdpart/${CPU_ARCH}  #代码编译时链接samples所依赖的相关库文件export PYTHONPATH=${THIRDPART_PATH}/acllite:$PYTHONPATH #设置pythonpath为固定目录export LD_LIBRARY_PATH=${THIRDPART_PATH}/lib:$LD_LIBRARY_PATH  #运行时链接库文件export INSTALL_DIR=${HOME}/Ascend/ascend-toolkit/latest #CANN软件安装后的文件存储路径,根据安装目录自行修改export DDK_PATH=${HOME}/Ascend/ascend-toolkit/latest #声明CANN环境export NPU_HOST_LIB=${DDK_PATH}/runtime/lib64/stub #声明CANN环境# 执行命令保存文件并退出。:wq!  # 执行命令使其立即生效。source ~/.bashrc# 创建samples相关依赖文件夹mkdir -p ${THIRDPART_PATH}# 下载源码并安装gitcd ${HOME}sudo apt-get install gitgit clone https://gitee.com/ascend/samples.git# 拷贝公共文件到samples相关依赖路径中cp -r ${HOME}/samples/common ${THIRDPART_PATH} # 拷贝media_mini等so文件以及相关头文件mkdir -p ${INSTALL_DIR}/drivercp /usr/lib64/libmedia_mini.so ${INSTALL_DIR}/driver/ #如路径中没有相关so文件,可跳过该命令cp /usr/lib64/libslog.so ${INSTALL_DIR}/driver/cp /usr/lib64/libc_sec.so ${INSTALL_DIR}/driver/cp /usr/lib64/libmmpa.so ${INSTALL_DIR}/driver/cp /usr/local/Ascend/include/peripheral_api.h ${INSTALL_DIR}/driver/ #如路径中没有相关头文件,可跳过该命令

2、安装python-acllite

# 安装ffmpeg部分依赖sudo apt-get install -y libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev # 安装其它依赖pip3 install --upgrade pippip3 install Cythonsudo apt-get install pkg-config libxcb-shm0-dev libxcb-xfixes0-dev# 安装avpip3 install av# 安装pillow 的依赖sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk# 安装numpy和PILpip3 install numpypip3 install Pillow# 将acllite目录拷贝到第三方文件夹中。后续编译依赖libmedia_mini.so,编译完成后需替换此处的acllite文件夹cp -r ${HOME}/samples/python/common/acllite ${THIRDPART_PATH}# C码库编译,本库包含Atlas200dk的板载摄像头访问接口,该接口是在C码(lib/src/目录)基础上做的python封装。cd ${HOME}/samples/python/common/acllite/lib/srcmake # 编译生成的libatalsutil.so在../atlas200dk/目录下。# 再次将acllite目录拷贝到第三方文件夹中,保证当前使用的是更新后的代码。cp -r ${HOME}/samples/python/common/acllite ${THIRDPART_PATH}

2

模型获取&转换

# 进入案例路径,samples为前置步骤中下载的案例包cd ${HOME}/samples/python/contrib/garbage_picture# 在model路径下下载原始模型wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com:443/003_Atc_Models/AE/ATC%20Model/garbage/mobilenetv2.air --no-check-certificatewget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/garbage_picture/insert_op_yuv.cfg --no-check-certificate# 使用ATC工具进行模型转换atc --model=./mobilenetv2.air --framework=1 --output=garbage_yuv --soc_version=Ascend310B1 --insert_op_conf=./insert_op_yuv.cfg --input_shape="data:1,3,224,224" --input_format=NCHW

3

测试数据获取

# 创建并进入data文件夹cd ${HOME}/samples/python/contrib/garbage_picturemkdir datacd data# 下载图片数据wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/garbage_picture/newspaper.jpgwget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/garbage_picture/bottle.jpg    wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/garbage_picture/dirtycloth.jpg# 进入案例运行路径 cd ../src

4

运行案例

运行python代码:

# 此处的data为测试数据路径python3 classify_test.py ../data/

➢运行成功后如无报错会显示以下信息:

图片

5

案例展示

在案例根目录out文件夹下会生成带有检测类别的图片:

图片

图片

图片

基于实现视频物体分类应用

1

环境安装

注意事项

➢以下操作以普通用户HwHiAiUser安装CANN包为例说明,推荐使用root用户进行操作,如果是root用户,请将安装准备中所有的${HOME}修改为/usr/local。

➢推荐按照本文档路径进行操作,如安装在自定义路径可能会导致环境冲突等问题。

1、配置相关环境

# 以安装用户在任意目录下执行以下命令,打开.bashrc文件。vi ~/.bashrc  # 在文件最后一行后面添加如下内容。export CPU_ARCH=`arch`export THIRDPART_PATH=${HOME}/Ascend/thirdpart/${CPU_ARCH}  #代码编译时链接samples所依赖的相关库文件export LD_LIBRARY_PATH=${THIRDPART_PATH}/lib:$LD_LIBRARY_PATH  #运行时链接库文件export INSTALL_DIR=${HOME}/Ascend/ascend-toolkit/latest #CANN软件安装后的文件存储路径,根据安装目录自行修改export DDK_PATH=${HOME}/Ascend/ascend-toolkit/latest #声明CANN环境export NPU_HOST_LIB=${DDK_PATH}/runtime/lib64/stub #声明CANN环境# 执行命令保存文件并退出。:wq!  # 执行命令使其立即生效。source ~/.bashrc # 创建samples相关依赖文件夹mkdir -p ${THIRDPART_PATH}# 下载源码并安装gitcd ${HOME}sudo apt-get install gitgit clone https://gitee.com/ascend/samples.git# 拷贝公共文件到samples相关依赖路径中cp -r ${HOME}/samples/common ${THIRDPART_PATH}# 拷贝media_mini等so文件以及相关头文件mkdir -p ${INSTALL_DIR}/drivercp /usr/lib64/libmedia_mini.so ${INSTALL_DIR}/driver/ #如路径中没有相关so文件,可跳过该命令cp /usr/lib64/libslog.so ${INSTALL_DIR}/driver/cp /usr/lib64/libc_sec.so ${INSTALL_DIR}/driver/cp /usr/lib64/libmmpa.so ${INSTALL_DIR}/driver/cp /usr/local/Ascend/include/peripheral_api.h ${INSTALL_DIR}/driver/ #如路径中没有相关头文件,可跳过该命令

2、安装opencv

# 执行以下命令安装opencv (注:请确保安装的版本是3.x)sudo apt-get install libopencv-dev# 如果安装的opencv版本为4.x,请执行下列命令链接对应头文件sudo ln -s /usr/include/opencv4/opencv2 /usr/include/

3、安装protobuf&presentagent

# 安装protobuf相关依赖sudo apt-get install autoconf automake libtool# 下载protobuf源码cd ${HOME}git clone -b 3.13.x https://gitee.com/mirrors/protobufsource.git protobuf# 编译安装protobufcd protobuf./autogen.sh./configure --prefix=${THIRDPART_PATH}make cleanmake -j8sudo make install# 进入presentagent源码目录并编译cd ${HOME}/samples/cplusplus/common/presenteragent/proto ${THIRDPART_PATH}/bin/protoc presenter_message.proto --cpp_out=./ #该步骤报错可参考FAQ# 开始编译presentagnetcd ..make -j8make install

2

模型转换&获取

注意事项

➢本案例使用基于Caffe的GoogLeNet模型,获取模型的命令已提供,如果开发者需要更多模型信息可参考:

# 进入案例路径,samples为前置步骤中下载的案例包cd ${HOME}/samples/cplusplus/level2_simple_inference/1_classification/googlenet_imagenet_video/model# 在model路径下下载原始模型wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/003_Atc_Models/AE/ATC%20Model/classification/googlenet.caffemodelwget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/003_Atc_Models/AE/ATC%20Model/classification/googlenet.prototxt# 在model路径下下载模型配置文件wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/googlenet_imagenet_video/insert_op.cfg# 使用ATC工具进行模型转换atc --model="./googlenet.prototxt" --weight="./googlenet.caffemodel" --framework=0 --output="googlenet" --soc_version=Ascend310B1 --insert_op_conf=./insert_op.cfg --input_shape="data:1,3,224,224" --input_format=NCHW

3

编译运行案例

1、执行编译脚本

# 进入脚本路径cd ${HOME}/samples/cplusplus/level2_simple_inference/1_classification/googlenet_imagenet_video/scripts# 赋予脚本权限 chmod +x sample_build.sh    # 执行编译脚本bash sample_build.sh

➢执行编译脚本后请根据实际情况选择arm/x86格式,在上进行操作请选择:arm

图片

➢编译脚本中会自动下载相关视频素材:cat.mp4,如开发者使用其它素材,可以在sample_build.sh处删除该命令

图片

➢编译完成后会生成相关文件并提示complete

图片

2、执行脚本运行案例

# 赋予脚本权限 chmod +x sample_run.sh    # 执行运行脚本bash sample_run.sh

➢执行运行脚本后,如果有本设备有多个ip,请选择能连通外网的ip并进行输入,例:10.1.30.111

图片

➢执行成功后,会提示successfully,并提供相关的网页链接

图片

➢运行脚本默认读取cat.mp4素材,如开发者使用其它素材,可以在sample_run.sh处更改素材路径

图片

4

案例展示

打开浏览器输入提供的网页链接与端口号,例:10.1.30.111:7007

➢进入下图界面后,等待状态栏变为绿色,可以单击“Refresh“刷新,当有数据时相应的Channel 的Status变成绿色。

➢状态栏正常后,点击右侧的View Name下的名字 ,例:classify

图片

➢进入视频物体分类界面后,会在视频左上角显示检测的物体类别,视频上方显示视频帧率,开发者可进行截图、录像等功能。

图片

5

相关FAQ

1、安装protobuf&presentagent时执行${THIRDPART_PATH}/bin/protoc presenter_message.proto --cpp_out=./ 

报错:protoc not such file or directory

➢该报错可能是protobuf安装问题:

# 回到protobuf安装路径cd /usr/local/probuf# 再次执行make installmake install# 查看${THIRDPART_PATH}/bin/下是否有protoc

2、执行编译脚本时报错如下图:

图片

➢该报错可能是opencv版本问题:

# 进入报错代码vi ../src/classify_process.cpp# 修改报错代码第279行(请根据实际代码行数修改)修改成:cv::IMWRITE_JPEG_QUALITY# 执行命令保存文件并退出:wq!# 重新执行编译脚本bash sample_build.sh

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/3451.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

去雾笔记-Pixel Shuffle,逆Pixel Shuffle,棋盘效应,转置卷积

文章目录 1.Pixel Shuffle2.Inverse Pixel Shuffle3.棋盘效应4.转置卷积5.宽激活块6.PSPNet7.反射填充层&#xff08;Reflective Padding Layer&#xff09;8.tanh层 1.Pixel Shuffle Pixel Shuffle是一种用于图像超分辨率的技术&#xff0c;它通过重新排列图像的像素来增加图…

【Nginx】Nginx 最新社区稳定版-1.26.0-发布

时隔一年多&#xff08;2023/4/11~2024/4/23&#xff09;&#xff0c;Nginx终于发布了其最新社区稳定版&#xff0c;版本号为&#xff1a;1.26.0 本次发布的1.26.0版本&#xff0c;在1.25.x开发版分支基础上&#xff0c;修复了众多Bug&#xff0c;并且还带来了一些新的实验性的…

树莓派学习笔记--Wiring Pi库的安装

前言 在刚开始学习树莓派的时候&#xff0c;新版本操作系统与旧版本有一定的区别&#xff0c;就导致跟着网上的教程来出现了很多问题&#xff0c;然后网上新操作系统的教程又很少&#xff0c;就导致前些时间学习一直没有进展。最近终于是把这些问题解决了。所以记录下来这些东西…

MySql篇

索引 B-树 定义&#xff1a; 1、根节点至少包含两个孩子 2、每个节点最多包含m个孩子(m > 2)&#xff0c;m为树的深度 3、除了根节点和叶子节点&#xff0c;其他节点至少有ceil(m/2)个孩子&#xff0c;ceil函数为取上限&#xff0c;例如ceil(1.2)2&#xff0c;就是小数位…

游戏新手村18:游戏广告渠道与广告形式

上文我们说到&#xff0c;渠道为王&#xff0c;渠道可以为我们带来流量和用户&#xff0c;进而带来收入。我们可以通过哪些渠道导入用户呢&#xff1f;每个渠道有哪些优劣呢&#xff1f;在进行游戏营销推广的时候我们该如何选择呢&#xff1f; 根据付费性质&#xff0c;我们可…

docker如何查看对外暴露接口

在Docker的世界里&#xff0c;了解如何查看容器对外暴露的接口是管理Docker应用的关键技能之一。暴露接口允许外部世界与容器内部的服务进行通信&#xff0c;是实现服务交互和持续集成/持续部署&#xff08;CI/CD&#xff09;管道的基础。本文将深入探讨Docker中暴露接口的机制…

先进制造aps专题四 计划型简单aps系统(plan)和排产型复杂aps系统(Scheduling)的区别

计划型算法很简单&#xff0c;只考虑产品和产线/车间&#xff0c;一个产线/车间对于一个产品&#xff0c;产线/车间24小时生产&#xff0c;没有休息时间段&#xff0c;java web类型的aps系统都是这种类型&#xff0c;这种其实是计划型的aps系统(plan) 要是排产考虑产品工序&am…

前端Vue2项目搭建过程

一.准备工作 1.可以上网找一些设计稿寻找思路开发页面界面布局 站酷设计网站&#xff1a;站酷ZCOOL-设计师互动平台-打开站酷&#xff0c;发现更好的设计&#xff01; 花瓣网&#xff1a;花瓣网 - 陪你做生活的设计师&#xff08;创意灵感天堂&#xff0c;搜索、发现设计灵感…

Pytorch迁移学习训练病变分类模型

划分数据集 1.创建训练集文件夹和测试集文件夹 # 创建 train 文件夹 os.mkdir(os.path.join(dataset_path, train))# 创建 test 文件夹 os.mkdir(os.path.join(dataset_path, val))# 在 train 和 test 文件夹中创建各类别子文件夹 for Retinopathy in classes:os.mkdir(os.pa…

【Windows】达芬奇19安装教程

DaVinci Resolve Studio是一个结合专业的8k编辑、颜色混合、视觉效果和音频后期制作的软件。只需点击一下&#xff0c;你就可以立即在编辑、混音、特效和音频流之间切换。此外&#xff0c;达芬奇是一个多用户协作的解决方案&#xff0c;使编辑、助理、色彩学家、视觉效果设计师…

SpringBoot统一结果处理和统一异常处理

一、使用统一返回对象 大部分前后端项目采用 JSON 格式进行数据交互,定义一个统一的数据规范,有利于前后台的交互、以及信息处理。比如如下: 【输出格式如下所示】 {"success": true,"code": 200,"message": "查询用户列表",&quo…

OS复习笔记ch4

引言 上一章&#xff0c;我们学习了进程的相关概念和知识&#xff0c;不知道小伙伴们的学习进度如何&#xff0c;没看的小伙伴记得去专栏看完哦。 线程从何而来 我们之前说过&#xff0c;进程是对程序运行过程的抽象&#xff0c;它的抽象程度是比较高的。 一个进程往往对应一…

C++:静态成员变量和静态成员方法

静态成员变量 C中的静态成员变量是属于类而不是类的实例的变量。这意味着无论创建了多少个类的实例&#xff0c;静态成员变量都只有一个副本&#xff0c;并且可以被所有类的实例共享。 让我们来看一个示例&#xff1a; class RolePlayer { public://静态成员变量static int …

先进制造aps专题三 为什么java语言不适合作为aps算法的开发语言

为什么java语言不适合作为aps算法的开发语言 主要两个原因 1 java的list在特定位置插入&#xff0c;其实是重新生成一个新list,而不像c就是指针操作 2 数据量大&#xff0c;运行时间长&#xff0c;会跑崩 所以商业aps产品&#xff0c;都是清一色的用c写aps算法 先进制造…

Uniapp 点击图片放大

1、html(循环图片) <view v-for"(i,index) in photo_list" :key"photoindex"><img :src"i" alt"" click"ClickImage(photo_list,i)" /></view> 2、js(方法) ClickImage(PhotoAddress, index) {uni.previ…

值得让英伟达CEO黄仁勋亲自给OpenAI配送的AI服务器!一文带你了解算力,GPU,CPU!

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;所以创建了“AI信息Gap”这个公众号&#xff0c;专注于分享AI全维度知识…

CSS_scss切换主题

目录assets/theme以下新建文件 _handle.scss import ./_themes.scss;// 定义混合指令, 切换主题,并将主题中的所有规则添加到theme-map中 mixin themify() {// 将themes中规则放入theme-mapeach $theme-name,$theme-map in $themes {$theme-map: $theme-map !global;[data-t…

怎么办,孟德尔随机化连锁不平衡跑不了!这里有本地连锁不平衡分析方法

大家都知道&#xff0c;孟德尔随机化很大程度依赖于国外的服务器。 最近我们发现孟德尔随机化常用的TwoSampleMR包的clump函数经常报错&#xff0c;这是由于服务器访问人群超时造成的现象&#xff0c;当线上版本失效。 很多人做孟德尔随机化&#xff0c;就卡在clump上。 于是我…

OpenStack云计算(十)——OpenStack虚拟机实例管理,增加一个计算节点并进行实例冷迁移,增加一个计算节点的步骤,实例冷迁移的操作方法

项目实训一 本实训任务对实验环境要求较高&#xff0c;而且过程比较复杂&#xff0c;涉及的步骤非常多&#xff0c;有一定难度&#xff0c;可根据需要选做。可以考虑改为直接观看相关的微课视频 【实训题目】 增加一个计算节点并进行实例冷迁移 【实训目的】 熟悉增加一个…

vue-router源码解析

vue-router简介 vue-router工作原理: url改变触发监听事件 (原理见路由模式)改变vue-router里面的current变量vue监听current的监听者获取到新的组件render新组件 vue-router如何实现无刷新页面切换: 采用某种方式使url发生改变。这种方式可能是调用HTML5 history API实现,…