基于昇腾AI 使用AscendCL实现垃圾分类和视频物体分类应用

现如今,人工智能迅猛发展,AI赋能产业发展的速度正在加快,“AI+”的需求蜂拥而来,但AI应用快速落地的过程中仍存在很大的挑战:向下需要适配的硬件,向上需要完善的技术支持,两者缺一不可。

基于此,昇腾推出了系列化行业SDK和参考设计,通过把千行百业细分场景的开发经验和行业知识沉淀下来、水平复制,从而大幅度降低门槛、简化开发、提升效率。而信迈科技是昇腾重要的APN合作伙伴、金牌分销商,具有较强的自主设计硬件能力,双方紧密携手,打造软硬结合、更符合行业需求的算力底座,赋能产业快速、低成本数字化转型。

使用AscendCL快速实现垃圾分类和视频物体分类应用的案例,帮助开发者降低学习成本、简化开发流程,缩短项目周期!

  案例概述

①垃圾分类应用:基于AscendCL,使用实现对图片中的垃圾类别进行检测,并输出有检测类别的图片;

②视频物体分类应用:基于GoogLeNet分类网络,使用实现对视频帧中的物体进行识别分类,并将分类的结果展示在PC网页上。

  案例说明

本案例底层原理逻辑请参考华为昇腾AscendCL <垃圾分类>,和<视频物体分类>案例。

  前置条件

图片

基于实现垃圾分类应用

1

环境安装

注意事项:

➢以下操作以普通用户HwHiAiUser安装CANN包为例说明,推荐使用root用户进行操作,如果是root用户,请将安装准备中所有的${HOME}修改为/usr/local。

➢推荐按照本文档路径进行操作,如安装在自定义路径可能会导致环境冲突等问题

1、配置相关环境

# 以安装用户在任意目录下执行以下命令,打开.bashrc文件。vi ~/.bashrc  # 在文件最后一行后面添加如下内容。source ${HOME}/Ascend/ascend-toolkit/set_env.shsource /home/work/MindX_SDK/mxVision-5.0.RC3/set_env.sh
export CPU_ARCH=`arch`export THIRDPART_PATH=${HOME}/Ascend/thirdpart/${CPU_ARCH}  #代码编译时链接samples所依赖的相关库文件export PYTHONPATH=${THIRDPART_PATH}/acllite:$PYTHONPATH #设置pythonpath为固定目录export LD_LIBRARY_PATH=${THIRDPART_PATH}/lib:$LD_LIBRARY_PATH  #运行时链接库文件export INSTALL_DIR=${HOME}/Ascend/ascend-toolkit/latest #CANN软件安装后的文件存储路径,根据安装目录自行修改export DDK_PATH=${HOME}/Ascend/ascend-toolkit/latest #声明CANN环境export NPU_HOST_LIB=${DDK_PATH}/runtime/lib64/stub #声明CANN环境# 执行命令保存文件并退出。:wq!  # 执行命令使其立即生效。source ~/.bashrc# 创建samples相关依赖文件夹mkdir -p ${THIRDPART_PATH}# 下载源码并安装gitcd ${HOME}sudo apt-get install gitgit clone https://gitee.com/ascend/samples.git# 拷贝公共文件到samples相关依赖路径中cp -r ${HOME}/samples/common ${THIRDPART_PATH} # 拷贝media_mini等so文件以及相关头文件mkdir -p ${INSTALL_DIR}/drivercp /usr/lib64/libmedia_mini.so ${INSTALL_DIR}/driver/ #如路径中没有相关so文件,可跳过该命令cp /usr/lib64/libslog.so ${INSTALL_DIR}/driver/cp /usr/lib64/libc_sec.so ${INSTALL_DIR}/driver/cp /usr/lib64/libmmpa.so ${INSTALL_DIR}/driver/cp /usr/local/Ascend/include/peripheral_api.h ${INSTALL_DIR}/driver/ #如路径中没有相关头文件,可跳过该命令

2、安装python-acllite

# 安装ffmpeg部分依赖sudo apt-get install -y libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev # 安装其它依赖pip3 install --upgrade pippip3 install Cythonsudo apt-get install pkg-config libxcb-shm0-dev libxcb-xfixes0-dev# 安装avpip3 install av# 安装pillow 的依赖sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk# 安装numpy和PILpip3 install numpypip3 install Pillow# 将acllite目录拷贝到第三方文件夹中。后续编译依赖libmedia_mini.so,编译完成后需替换此处的acllite文件夹cp -r ${HOME}/samples/python/common/acllite ${THIRDPART_PATH}# C码库编译,本库包含Atlas200dk的板载摄像头访问接口,该接口是在C码(lib/src/目录)基础上做的python封装。cd ${HOME}/samples/python/common/acllite/lib/srcmake # 编译生成的libatalsutil.so在../atlas200dk/目录下。# 再次将acllite目录拷贝到第三方文件夹中,保证当前使用的是更新后的代码。cp -r ${HOME}/samples/python/common/acllite ${THIRDPART_PATH}

2

模型获取&转换

# 进入案例路径,samples为前置步骤中下载的案例包cd ${HOME}/samples/python/contrib/garbage_picture# 在model路径下下载原始模型wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com:443/003_Atc_Models/AE/ATC%20Model/garbage/mobilenetv2.air --no-check-certificatewget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/garbage_picture/insert_op_yuv.cfg --no-check-certificate# 使用ATC工具进行模型转换atc --model=./mobilenetv2.air --framework=1 --output=garbage_yuv --soc_version=Ascend310B1 --insert_op_conf=./insert_op_yuv.cfg --input_shape="data:1,3,224,224" --input_format=NCHW

3

测试数据获取

# 创建并进入data文件夹cd ${HOME}/samples/python/contrib/garbage_picturemkdir datacd data# 下载图片数据wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/garbage_picture/newspaper.jpgwget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/garbage_picture/bottle.jpg    wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/garbage_picture/dirtycloth.jpg# 进入案例运行路径 cd ../src

4

运行案例

运行python代码:

# 此处的data为测试数据路径python3 classify_test.py ../data/

➢运行成功后如无报错会显示以下信息:

图片

5

案例展示

在案例根目录out文件夹下会生成带有检测类别的图片:

图片

图片

图片

基于实现视频物体分类应用

1

环境安装

注意事项

➢以下操作以普通用户HwHiAiUser安装CANN包为例说明,推荐使用root用户进行操作,如果是root用户,请将安装准备中所有的${HOME}修改为/usr/local。

➢推荐按照本文档路径进行操作,如安装在自定义路径可能会导致环境冲突等问题。

1、配置相关环境

# 以安装用户在任意目录下执行以下命令,打开.bashrc文件。vi ~/.bashrc  # 在文件最后一行后面添加如下内容。export CPU_ARCH=`arch`export THIRDPART_PATH=${HOME}/Ascend/thirdpart/${CPU_ARCH}  #代码编译时链接samples所依赖的相关库文件export LD_LIBRARY_PATH=${THIRDPART_PATH}/lib:$LD_LIBRARY_PATH  #运行时链接库文件export INSTALL_DIR=${HOME}/Ascend/ascend-toolkit/latest #CANN软件安装后的文件存储路径,根据安装目录自行修改export DDK_PATH=${HOME}/Ascend/ascend-toolkit/latest #声明CANN环境export NPU_HOST_LIB=${DDK_PATH}/runtime/lib64/stub #声明CANN环境# 执行命令保存文件并退出。:wq!  # 执行命令使其立即生效。source ~/.bashrc # 创建samples相关依赖文件夹mkdir -p ${THIRDPART_PATH}# 下载源码并安装gitcd ${HOME}sudo apt-get install gitgit clone https://gitee.com/ascend/samples.git# 拷贝公共文件到samples相关依赖路径中cp -r ${HOME}/samples/common ${THIRDPART_PATH}# 拷贝media_mini等so文件以及相关头文件mkdir -p ${INSTALL_DIR}/drivercp /usr/lib64/libmedia_mini.so ${INSTALL_DIR}/driver/ #如路径中没有相关so文件,可跳过该命令cp /usr/lib64/libslog.so ${INSTALL_DIR}/driver/cp /usr/lib64/libc_sec.so ${INSTALL_DIR}/driver/cp /usr/lib64/libmmpa.so ${INSTALL_DIR}/driver/cp /usr/local/Ascend/include/peripheral_api.h ${INSTALL_DIR}/driver/ #如路径中没有相关头文件,可跳过该命令

2、安装opencv

# 执行以下命令安装opencv (注:请确保安装的版本是3.x)sudo apt-get install libopencv-dev# 如果安装的opencv版本为4.x,请执行下列命令链接对应头文件sudo ln -s /usr/include/opencv4/opencv2 /usr/include/

3、安装protobuf&presentagent

# 安装protobuf相关依赖sudo apt-get install autoconf automake libtool# 下载protobuf源码cd ${HOME}git clone -b 3.13.x https://gitee.com/mirrors/protobufsource.git protobuf# 编译安装protobufcd protobuf./autogen.sh./configure --prefix=${THIRDPART_PATH}make cleanmake -j8sudo make install# 进入presentagent源码目录并编译cd ${HOME}/samples/cplusplus/common/presenteragent/proto ${THIRDPART_PATH}/bin/protoc presenter_message.proto --cpp_out=./ #该步骤报错可参考FAQ# 开始编译presentagnetcd ..make -j8make install

2

模型转换&获取

注意事项

➢本案例使用基于Caffe的GoogLeNet模型,获取模型的命令已提供,如果开发者需要更多模型信息可参考:

# 进入案例路径,samples为前置步骤中下载的案例包cd ${HOME}/samples/cplusplus/level2_simple_inference/1_classification/googlenet_imagenet_video/model# 在model路径下下载原始模型wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/003_Atc_Models/AE/ATC%20Model/classification/googlenet.caffemodelwget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/003_Atc_Models/AE/ATC%20Model/classification/googlenet.prototxt# 在model路径下下载模型配置文件wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/googlenet_imagenet_video/insert_op.cfg# 使用ATC工具进行模型转换atc --model="./googlenet.prototxt" --weight="./googlenet.caffemodel" --framework=0 --output="googlenet" --soc_version=Ascend310B1 --insert_op_conf=./insert_op.cfg --input_shape="data:1,3,224,224" --input_format=NCHW

3

编译运行案例

1、执行编译脚本

# 进入脚本路径cd ${HOME}/samples/cplusplus/level2_simple_inference/1_classification/googlenet_imagenet_video/scripts# 赋予脚本权限 chmod +x sample_build.sh    # 执行编译脚本bash sample_build.sh

➢执行编译脚本后请根据实际情况选择arm/x86格式,在上进行操作请选择:arm

图片

➢编译脚本中会自动下载相关视频素材:cat.mp4,如开发者使用其它素材,可以在sample_build.sh处删除该命令

图片

➢编译完成后会生成相关文件并提示complete

图片

2、执行脚本运行案例

# 赋予脚本权限 chmod +x sample_run.sh    # 执行运行脚本bash sample_run.sh

➢执行运行脚本后,如果有本设备有多个ip,请选择能连通外网的ip并进行输入,例:10.1.30.111

图片

➢执行成功后,会提示successfully,并提供相关的网页链接

图片

➢运行脚本默认读取cat.mp4素材,如开发者使用其它素材,可以在sample_run.sh处更改素材路径

图片

4

案例展示

打开浏览器输入提供的网页链接与端口号,例:10.1.30.111:7007

➢进入下图界面后,等待状态栏变为绿色,可以单击“Refresh“刷新,当有数据时相应的Channel 的Status变成绿色。

➢状态栏正常后,点击右侧的View Name下的名字 ,例:classify

图片

➢进入视频物体分类界面后,会在视频左上角显示检测的物体类别,视频上方显示视频帧率,开发者可进行截图、录像等功能。

图片

5

相关FAQ

1、安装protobuf&presentagent时执行${THIRDPART_PATH}/bin/protoc presenter_message.proto --cpp_out=./ 

报错:protoc not such file or directory

➢该报错可能是protobuf安装问题:

# 回到protobuf安装路径cd /usr/local/probuf# 再次执行make installmake install# 查看${THIRDPART_PATH}/bin/下是否有protoc

2、执行编译脚本时报错如下图:

图片

➢该报错可能是opencv版本问题:

# 进入报错代码vi ../src/classify_process.cpp# 修改报错代码第279行(请根据实际代码行数修改)修改成:cv::IMWRITE_JPEG_QUALITY# 执行命令保存文件并退出:wq!# 重新执行编译脚本bash sample_build.sh

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/3451.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

去雾笔记-Pixel Shuffle,逆Pixel Shuffle,棋盘效应,转置卷积

文章目录 1.Pixel Shuffle2.Inverse Pixel Shuffle3.棋盘效应4.转置卷积5.宽激活块6.PSPNet7.反射填充层&#xff08;Reflective Padding Layer&#xff09;8.tanh层 1.Pixel Shuffle Pixel Shuffle是一种用于图像超分辨率的技术&#xff0c;它通过重新排列图像的像素来增加图…

树莓派学习笔记--Wiring Pi库的安装

前言 在刚开始学习树莓派的时候&#xff0c;新版本操作系统与旧版本有一定的区别&#xff0c;就导致跟着网上的教程来出现了很多问题&#xff0c;然后网上新操作系统的教程又很少&#xff0c;就导致前些时间学习一直没有进展。最近终于是把这些问题解决了。所以记录下来这些东西…

MySql篇

索引 B-树 定义&#xff1a; 1、根节点至少包含两个孩子 2、每个节点最多包含m个孩子(m > 2)&#xff0c;m为树的深度 3、除了根节点和叶子节点&#xff0c;其他节点至少有ceil(m/2)个孩子&#xff0c;ceil函数为取上限&#xff0c;例如ceil(1.2)2&#xff0c;就是小数位…

游戏新手村18:游戏广告渠道与广告形式

上文我们说到&#xff0c;渠道为王&#xff0c;渠道可以为我们带来流量和用户&#xff0c;进而带来收入。我们可以通过哪些渠道导入用户呢&#xff1f;每个渠道有哪些优劣呢&#xff1f;在进行游戏营销推广的时候我们该如何选择呢&#xff1f; 根据付费性质&#xff0c;我们可…

Pytorch迁移学习训练病变分类模型

划分数据集 1.创建训练集文件夹和测试集文件夹 # 创建 train 文件夹 os.mkdir(os.path.join(dataset_path, train))# 创建 test 文件夹 os.mkdir(os.path.join(dataset_path, val))# 在 train 和 test 文件夹中创建各类别子文件夹 for Retinopathy in classes:os.mkdir(os.pa…

【Windows】达芬奇19安装教程

DaVinci Resolve Studio是一个结合专业的8k编辑、颜色混合、视觉效果和音频后期制作的软件。只需点击一下&#xff0c;你就可以立即在编辑、混音、特效和音频流之间切换。此外&#xff0c;达芬奇是一个多用户协作的解决方案&#xff0c;使编辑、助理、色彩学家、视觉效果设计师…

OS复习笔记ch4

引言 上一章&#xff0c;我们学习了进程的相关概念和知识&#xff0c;不知道小伙伴们的学习进度如何&#xff0c;没看的小伙伴记得去专栏看完哦。 线程从何而来 我们之前说过&#xff0c;进程是对程序运行过程的抽象&#xff0c;它的抽象程度是比较高的。 一个进程往往对应一…

C++:静态成员变量和静态成员方法

静态成员变量 C中的静态成员变量是属于类而不是类的实例的变量。这意味着无论创建了多少个类的实例&#xff0c;静态成员变量都只有一个副本&#xff0c;并且可以被所有类的实例共享。 让我们来看一个示例&#xff1a; class RolePlayer { public://静态成员变量static int …

值得让英伟达CEO黄仁勋亲自给OpenAI配送的AI服务器!一文带你了解算力,GPU,CPU!

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;所以创建了“AI信息Gap”这个公众号&#xff0c;专注于分享AI全维度知识…

怎么办,孟德尔随机化连锁不平衡跑不了!这里有本地连锁不平衡分析方法

大家都知道&#xff0c;孟德尔随机化很大程度依赖于国外的服务器。 最近我们发现孟德尔随机化常用的TwoSampleMR包的clump函数经常报错&#xff0c;这是由于服务器访问人群超时造成的现象&#xff0c;当线上版本失效。 很多人做孟德尔随机化&#xff0c;就卡在clump上。 于是我…

OpenStack云计算(十)——OpenStack虚拟机实例管理,增加一个计算节点并进行实例冷迁移,增加一个计算节点的步骤,实例冷迁移的操作方法

项目实训一 本实训任务对实验环境要求较高&#xff0c;而且过程比较复杂&#xff0c;涉及的步骤非常多&#xff0c;有一定难度&#xff0c;可根据需要选做。可以考虑改为直接观看相关的微课视频 【实训题目】 增加一个计算节点并进行实例冷迁移 【实训目的】 熟悉增加一个…

牛客NC199 字符串解码【中等 递归,栈的思想 C++/Java/Go/PHP】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/4e008fd863bb4681b54fb438bb859b92 相同题目&#xff1a; https://www.lintcode.com/problem/575 思路 解法和基础计算器1&#xff0c;2,3类似,递归参考答案C struct Info {string str;int stopindex;Info(str…

AOC vs. DAC:哪个更适合您的网络需求?

在现代网络通信中&#xff0c;选择合适的连接线缆对于数据传输的稳定性和速度至关重要。两种常见的线缆类型是 AOC&#xff08;Active Optical Cable&#xff09; 和 DAC&#xff08;Direct Attach Cable&#xff09;。本文将详细介绍这两种线缆的特点、优势和适用场景&#xf…

Aigtek:介电弹性体高压放大器在软体机器人研究中的应用

近年来软体机器人的研究成为目前机器人研究领域的热点&#xff0c;由于软体材料的自由度可以根据需求自由变化&#xff0c;因此软体机器人有着极高的灵活性&#xff0c;而且软体机器人因其材料的柔软性有着很好的人机交互性能和安全性。它的出现成功解决了传统的刚性机器人人机…

JavaScript云LIS系统概述 前端框架JQuery+EasyUI+Bootstrap医院云HIS系统源码 开箱即用

云LIS系统概述JavaScript前端框架JQueryEasyUIBootstrap医院云HIS系统源码 开箱即用 云LIS&#xff08;云实验室信息管理系统&#xff09;是一种结合了计算机网络化信息系统的技术&#xff0c;它无缝嵌入到云HIS&#xff08;医院信息系统&#xff09;中&#xff0c;用于连…

《异常检测——从经典算法到深度学习》27 可执行且可解释的在线服务系统中重复故障定位方法

《异常检测——从经典算法到深度学习》 0 概论1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法3 基于One-Class SVM的异常检测算法4 基于高斯概率密度异常检测算法5 Opprentice——异常检测经典算法最终篇6 基于重构概率的 VAE 异常检测7 基于条件VAE异常检测8 Donut: …

Oracle 监控 SQL 精选 (一)

Oracle数据库的监控通常涉及性能、空间、会话、对象、备份、安全等多个层面。 有效的监控可以帮助 DBA 及时发现和解决问题&#xff0c;提高数据库的稳定性和性能&#xff0c;保障企业的数据安全和业务连续性。 常用的监控指标有&#xff1a; 性能指标&#xff1a; 查询响应时间…

抽象工厂模式(Redis 集群升级)

目录 定义 Redis 集群升级 模拟单机服务 RedisUtils 模拟集群 EGM 模拟集群 IIR 定义使⽤接⼝ 实现调⽤代码 代码实现 定义适配接⼝ 实现集群使⽤服务 EGMCacheAdapter IIRCacheAdapter 定义抽象⼯程代理类和实现 JDKProxy JDKInvocationHandler 测试验证 定义 …

Mockaroo - 在线生成测试用例利器

简介&#xff1a;Mockaroo 是一个无需安装的在线工具&#xff0c;用于生成大量的自定义测试数据。它支持多种数据格式&#xff0c;如JSON、CSV、SQL和Excel&#xff0c;并能模拟复杂的数据结构。 历史攻略&#xff1a; 测试用例&#xff1a;多条件下编写&#xff0c;懒人妙用…

ChatGPT付费创作系统V2.8.4独立版 WEB+H5+小程序端 (新增Pika视频+短信宝+DALL-E-3+Midjourney接口)

小狐狸GPT付费体验系统最新版系统是一款基于ThinkPHP框架开发的AI问答小程序&#xff0c;是基于国外很火的ChatGPT进行开发的Ai智能问答小程序。当前全民热议ChatGPT&#xff0c;流量超级大&#xff0c;引流不要太简单&#xff01;一键下单即可拥有自己的GPT&#xff01;无限多…