基于协方差信息的Massive MIMO信道估计算法性能研究

1. 引言

随着移动互联网不断发展,人们对通信的速率和可靠性的要求越来越高[1]。目前第四代移动通信系统已经逐渐商用,研究人员开始着手研究下一代移动通信系统相关技术[2][3]。在下一代移动通信系统中要求下行速率达到10Gbps,这就要求我们使用更先进的技术和更宽的系统带宽。MIMO技术由于可以在不增加系统带宽和功率的前提下,成倍的提升系统容量和可靠性,已经广泛应用于各种无线通信系统中,但仅采用传统的MIMO技术很难实现10Gbps的速率需求,于是Bell实验室于2010年提出了Massive MIMO[4]的概念。Massive MIMO技术在基站侧设置大量天线,同时服务多个用户,其基站侧天线数远大于用户总的天线数,可以极大的提升系统的容量和可靠性[5][6],被认为是下一代移动通信系统可能的关键技术之一。

然而由于采用大规模的天线阵列,Massive MIMO的信道估计问题较MIMO系统更为突出,尤其是在多小区环境下,导频污染[4][5] [6]被认为是制约Massive MIMO性能的关键因素。因此,研究人员针对Massive MIMO的信道估计问题展开了大量的研究,根据Massive MIMO系统拥有大量多余的空间自由度的特点,提出了一系列对抗导频污染的信道估计算法,其中包括盲信道估计[7],基于子空间投影的信道估计[8],基于信道统计信息的信道估计[9][10]。其中基于信道协方差矩阵的信道估计算法[10]的实现相对简单,是本文主要讨论的对象。该算法要求基站拥有精确的本小区用户信道的协方差矩阵和相邻小区干扰用户信道的协方差矩阵,这在实际环境中往往无法得到,本文主要分析带误差的信道协方差矩阵对信道估计算法性能的影响,并提出一种信道的协方差矩阵的训练方法。

本文的结构如下:第2节,给出Massive MIMO的系统模型、信道建模方法以及线性预编码;第3节,给出了基于协方差信息的Massive MIMO信道估计算法以及信道的协方差矩阵的训练方法;第4节,在基站估计的信道协方差矩阵拥有不同大小误差的情况下,对信道估计算法的性能进行仿真,并对仿真结果进行分析;第5节,结论。

2. 系统模型

本文主要考虑在Massive MIMO系统上行链路中,在非视距、瑞利衰落环境下研究信道估计算法的性能。假定基站侧天线响应相关,用户侧天线响应不相干,且信道为平坦衰落,其系统模型如图1所示。

2.1 Massive MIMO系统模型

本文考虑系统中有L个时间同步的小区,即所有用户在同一时刻发送导频序列,并假定导频序列的长度为τ,且小区内的用户导频相互正交,而L个小区共用一组导频序列,则此时进行信道估计时就会受到来自其余L-1小区的导频干扰。同时在基站侧设置M根天线,为了简化分析假设每个小区内只有一个用户,在用户发送导频阶段,第j个小区的基站接收到的信号可以表示为:

(1)

式中yj∈CM×τ表示第j个小区的基站接收到的信号,hi,j∈CM×1表示位于第i个小区的用户到的第j个小区基站侧M根天线的信道传输矩阵,xi∈C1×τ表示第i个小区的用户发送的信号,N∈CM×τ表示M根天线上的均值为零,方差为σn2的加性高斯白噪声,其中hj,j·xj表示目标小区用户的导频信号,∑Li=1,i≠j(hi,j·xj)表示来自其余L-1个小区用户的干扰。

图1 多小区的Massive MIMO的系统模型

2.2 Massive MIMO的信道模型

当在非视距情况下,不同用户的信号往往经过不同的路径,以不同的角度到达基站,如图2所示。因此假设基站侧的M根天线响应相关,而用户侧的响应相互独立,此时对Massive MIMO的信道传输矩阵h可以表示

(3)

式中Giid∈CM×1是复高斯分布的随机变量;RT∈CM×M是基站侧天线响应的相关矩阵,即信道的协方差矩阵,可以根据用户信号的到达角(AOA)功率谱P(θ)得到,当基站侧天线为线性天线阵列时,信道的协方差矩阵RT可以表示为:

(4)

(5)

式中A(θ)表示当信号的到达角(AOA)为θ时,基站侧天线阵列的导向矢量。其中d表示基站侧天线间距,λ表示信号的波长。本文中考虑采用为高斯分布或者仅在某角度范围内有值、且为均匀分布的到达角(AOA)功率谱函数P(θ)来生成信道的协方差矩阵,分析不同分布情况下算法性能。

图2 Massive MIMO的系统的信道模型

3. 信道估计算法

为了简化分析,本文中主要考虑某特定小区估计的信道受其他小L-1个小区的影响情况,由于L个小区的用户使用长度为τ、且相同的导频序列,因此当第j个小区的基站采用LS算法得到的受导频污染影响的信道可以表示为

式中表示采用LS算法估计得到的信道,而即来自其他L-1个小区的导频污染。从式中可以看出,若在多小区的Massive MIMO系统中直接采用LS算法来进行信道估计,将会来自其他小区的干扰直接泄漏到估计的信道中,直接降低了Massive MIMO系统预编码和检测方法的有效性,严重制约了Massive MIMO性能的提升。

Massive MIMO系统的基站侧天线数远大于用户总的天线数,其拥有大量多余的空间自由度,如何利用系统多余的空间自由度为信道估计服务,是目前消除Massive MIMO信道估计中的导频污染影响的主要思想。

3.1基于协方差信息的Massive MIMO信道估计算法[10]

Massive MIMO系统中,信道的协方差矩阵是信道的二阶统计量,其中包含用户信号的到达角功率分布信息(主要是均值和方差),且和信道传输矩阵相比信道的协方差信息一般是慢时变的,因此考虑利用信道的协方差信息来进行对Massive MIMO信道估计。

3.2信道的协方差矩阵的训练方法

基于协方差信息的Massive MIMO信道估计算法要求基站拥有所有用户的精确的信道协方差矩阵,由于信道协方差信息是慢时变的,这获取小区内的用户的精确的信道协方差矩阵比较容易实现,但是要获取相邻小区的干扰用户的精确的信道协方差矩阵将会比较困难。同时由于信道协方差矩阵的时变特性,导致估计的信道协方差矩阵与真实的信道协方差矩阵总存在一定的偏差,这就要求我们设计一种可以让基站获取多个小区用户的精确信道协方差矩阵的训练方法。

本文主要考虑非视距的Massive MIMO信道,信道的瞬时响应呈现小尺度衰落,但是依据上面Massive MIMO信道建模公式可知,信道协方差矩阵由用户信号的到达角功率谱函数P(θ),即实际信道中的散射体分布情况直接决定,其在相当大的一个频段范围内都是平坦的。在实际系统往往将Massive MIMO技术与OFDM技术相结合,因此利用少量子载波估计得到的信道协方差矩阵适用于所有子载波。

因此,本文提出以若干个小区一组,组内不同小区的用户在不同的子载波上发送用于训练其信道协方差矩阵的导频信号,用于训练其信道协方差矩阵的子载波在组内小区之间不再复用,以消除小区间干扰,提高信道协方差矩阵的估计精度,利用这种方法可以有效解决用户信道的协方差矩阵的训练问题,保证信道估计算法的性能。

4. 性能仿真与分析

本文主要考虑当基站用于信道估计的干扰用户的信道协方差矩阵包含不同程度的误差情况下,对基于协方差信息的Massive MIMO信道估计算法性能进行仿真,其中系统参数设置如表1所示。

首先是当基站拥有精确的信道协方差矩阵时,对基站侧设置不同天线数情况下的算法性能进行仿真。假设目标用户功率与干扰用户功率的比值为5dB,仿真结果如图3所示。从图中可以看出,当基站拥有目标用户和所有干扰用户精确的信道协方差矩阵时,随着基站侧天线数的增加,该信道

表1 仿真参数设置

系统参数信道参数
小区数2AOA分布高斯分布
小区内用户数1AOA均值50゜/80゜
基站侧天线4-128根(线性阵列)AOA扩展角10゜
天线间距λ/2小区内用户SNR20dB
工作频率2.6Ghz
仿真次数10000

估计算法的估计误差迅速下降,当天线数达到128根时,信道估计误差接近-20dB,可见当基站拥有目标用户和所有干扰用户的精确的信道协方差矩阵时,该信道估计算法可以有效抑制来自其他小区的导频污染,提升系统性能。

图3 基站拥有精确的信道协方差信息时,信道估计精度与基站侧天线数的关系

然后仿真了在基站用于信道估计的信道协方差矩阵与实际的信道协方差矩阵有一定偏差情况下,当基站估计的信道协方差矩阵的AOA均值与实际的存在10゜的偏差时,对基站侧设置不同天线数情况下的算法性能进行仿真,假设目标用户功率与干扰用户功率的比值为5dB,仿真结果如图4所示。从图中可以看出,当基站用于信道估计的干扰用户的信道协方差矩阵存在误差时,随着基站侧天线数的增加,该算法的信道估计误差出现明显振荡现象,当天线数达到128根时,估计误差约为-8dB比理想情况下的性能要差12dB左右,可见当信道协方差矩阵存在误差时,算法性能急剧下降,这说明该算法不适用于无法获取用户的实时的精确的信道协方差信息的信道情况。

图4 基站拥有的信道协方差信息含噪声时,信道估计精度与基站侧天线数的关系

图5 算法处理前后的目标信号的均方值比值与干扰用户的信道协方差矩阵估计精度的关系

最后仿真了当基站用于信道估计的干扰用户的信道协方差矩阵包含不同程度的误差情况下,该算法对导频污染的抑制能力。仿真了当基站拥有目标用户的精确信道协方差矩阵,同时基站估计的干扰用户的信道协方差矩阵的AOA均值与实际AOA均值的偏差从-5゜到5゜时,基站侧天线数为128根,算法处理前后的目标信号、干扰信号和系统噪声的均方值比值的仿真结果如图5、6、7所示。从图中可以看出,干扰用户的信道协方差矩阵存在一定偏差时,不会对目标信号的提取和对高斯白噪声的抑制产生影响,l1保持在0dB左右,l3保持在-5dB左右。而当出现角度偏差时,该算法对干扰信号的抑制能力将会出现振荡现象,振荡的幅值达到15dB,l2最好可以达到-27.4dB左右,l2最差仅为-13dB,可见当基站估计的干扰用户的信道协方差矩阵与实际的信道协方差矩阵存在一定偏差时,该信道估计算法的性能将会大幅下降。

图6 算法处理前后的干扰信号的均方值比值与干扰用户的信道协方差矩阵估计精度的关系

图7 算法处理前后的系统热噪声的均方值比值与干扰用户的信道协方差矩阵估计精度的关系

5. 结论

在Massive MIMO系统中,若用户信道位于不同向量子空间,则可以利用用户信道的协方差矩阵可以有效地提取目标用户的信道传输矩阵。但若用于信道估计的协方差信息与实际的信道传输矩阵存在一定的偏差时,该算法性能快速下降,说明该算法需要所有用户的精确的信道协方差信息。针对精确的信道协方差信息的获取问题,本文提出了一种信道的协方差信息的训练方法,使基站可以获取目标用户和所有干扰用户的精确且实时的信道协方差矩阵,这对该信道估计算法应用于实际的Massive MIMO系统的信道估计拥有非常重要的意义。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/32778.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BFS:解决多源最短路问题

文章目录 什么是多源最短路问题?1.矩阵2.飞地的数量3.地图的最高点4.地图分析总结 什么是多源最短路问题? 多源最短路问题(Multi-Source Shortest Path Problem,MSSP)是图论中的一个经典问题,它的目标是在…

支付系统的渠道路由架构设计

图解支付系统的渠道路由设计 渠道路由是引导流量路径的关键,其设计至关重要。本文详解渠道路由概念、必要性及形态,并分享一个高效实用的基于规则的渠道路由设计方案。 注:有些公司称渠道为通道,都是一个意思,为方便起…

【React】ref

概述 使用 ref 引用值 – React 中文文档 希望组件“记住”某些信息,但又不想让这些信息更新时 触发新的渲染 时,可以使用 ref 。 也就是说 ref 对象 包裹的值 React 追踪不到的,他像是用来存储组件信息的秘密“口袋”。 与 state 相同的是…

基于uni-app和图鸟UI开发上门服务小程序

一、技术栈选择 uni-app:我们选择了uni-app作为开发框架,因为它基于Vue.js,允许我们编写一次代码,发布到多个平台,包括iOS、Android、Web以及各种小程序。uni-app的丰富组件库、高效的状态管理以及便捷的预览调试功能&…

【PL理论深化】(3) MI 归纳法:归纳假设 (IH) | 结构归纳法 | 归纳假设的证明

💬 写在前面:所有编程语言都是通过归纳法定义的。因此,虽然编程语言本身是有限的,但用该语言编写的程序数量是没有限制的,本章将学习编程语言研究中最基本的归纳法。本章我们继续讲解归纳法,介绍归纳假设和…

【论文阅读】场景生成及编辑3D定位论文阅读

<div id"content_views" class"htmledit_views" style"user-select: auto;"><div class"kdocs-document"> 前置知识 归纳偏置 关于归纳偏置的理解&#xff1a;首先推荐一篇解释归纳偏置非常好的博客&#xff1a;浅谈归纳…

STM32学习 修改系统主频

前面时钟树的学习说明单片机的主频是可以修改的&#xff0c;那么怎么更改系统的主频&#xff0c;这里做一个简单的介绍。首先要明白&#xff0c;单片机的程序是如何运行&#xff0c;这里简单说明一下。 对应的代码在startup_stm32....文件里面&#xff0c;这里是复位程序的汇编…

多分类情绪识别模型训练及基于ChatGLM4-9B的评论机器人拓展

你的下一个微博罗伯特何必是罗伯特 这是一篇我在使用开源数据集(Twitter Emotion Dataset (kaggle.com))进行情绪识别的分类模型训练及将模型文件介入对话模型进行应用的过程记录。当通过训练得到了可以输入新样本预测的模型文件后&#xff0c;想到了或许可以使用模型文件对新样…

JavaScript的学习之旅之初始JS

目录 一、认识三个常见的js代码 二、js写入的第二种方式 三、js里内外部文件 一、认识三个常见的js代码 <script>//写入js位置的第一个地方// 控制浏览器弹出一个警告框alert("这是一个警告");// 在计算机页面输入一个内容&#xff08;写入body中&#xff…

【计算机网络仿真实验-实验3.1、3.2】交换路由综合实验

实验3.1 交换路由综合实验——作业1 一、实验目的 运用实验二&#xff08;可前往博主首页计算机网络专栏下查看&#xff09;中学到的知识&#xff0c;将这个图中的PC机连接起来组网并分析&#xff0c;本篇涉及代码以截图展示&#xff0c;过于简单的代码及操作不再详细介绍&…

RPC通信原理以及项目的技术选型

目录 1.引言 2、RPC通信原理 3.图示解析 4.再举个例子 1.引言 根据上一篇博客《单机&#xff0c;集群和分布式》的举的例子。 我们最终合理地通过对大型软件的合理划分&#xff0c;划分成不同模块&#xff0c;按需求&#xff08;硬件需求&#xff0c;高并发需求&#xff09…

K8S - 理解ClusterIP - 集群内部service之间的反向代理和loadbalancer

在Micro Service的治理中。 有两个很重要的点&#xff0c; 集群外部的用户/service 如何访问集群内的 入口服务(例如UI service&#xff09;集群内的service A 如何 访问 集群内的service B 为什么有上面的问题 无非是&#xff1a; 集群内的service 都是多实例的每个servic…

【区块链】区块链架构设计:从原理到实践

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 区块链架构设计&#xff1a;从原理到实践引言一、区块链基础概念1.1 区块链定义…

[系统运维|Xshell]宿主机无法连接上NAT网络下的虚拟机进行维护?主机ping不通NAT网络下的虚拟机,虚拟机ping的通主机!解决办法

遇到的问题&#xff1a;主机ping不通NAT网络下的虚拟机&#xff0c;虚拟机ping的通主机 服务器&#xff1a;Linux&#xff08;虚拟机&#xff09; 主机PC&#xff1a;Windows 虚拟机&#xff1a;vb&#xff0c;vm测试过没问题&#xff0c;vnc没测试不清楚 虚拟机网络&#xff1…

基础算法---滑动窗口

文章目录 什么是滑动窗口1.长度最小的子数组2.无重复字符的最长子串3.最大连续1的个数4.将x减到0的最小操作数5.最小覆盖子串总结 什么是滑动窗口 滑动窗口&#xff08;Sliding Window&#xff09;是一种在计算机科学中用于解决各种子数组或子字符串问题的技术。滑动窗口技术通…

【SQL每日一练】HackerRan-Basic Join-Challenges练习

文章目录 题目题析题解1.sqlserver 题目 编写一个查询来打印 hacker _ id、 name 和每个学生创建的挑战的总数。按照挑战的总数按降序对结果进行排序。如果不止一个学生创建了相同数量的挑战&#xff0c;那么按 hacker _ id 对结果进行排序。如果不止一个学生创建了相同数量的…

北京BJ90升级新款迈巴赫大连屏四座头等舱行政四座马鞍

北京BJ90升级奔驰迈巴赫头等舱行政四座大联屏的内饰效果会非常出色&#xff0c;将为车辆带来更豪华、高端的内饰氛围。以下是升级后可能的效果&#xff1a; • 科技感提升&#xff1a;奔驰的中控系统一直以来都以其先进的科技和用户友好的界面而闻名。升级后&#xff0c;北京B…

Windows Api如何创建一个快捷方式并且在开始菜单搜索到自己的应用

原文链接&#xff1a;http://cshelloworld.com/home/detail/1804473083243925504 当我们点击win10系统搜索框的时候&#xff0c;输入名称 &#xff0c;win10会帮助我们匹配到对应的应用。这里搜索框实际上就是windows系统的开始菜单。 接下来我们随便找一个应用&#xff0c;右…

湖北民族大学2024年成人高等继续教育招生简章

湖北民族大学&#xff0c;这所承载着深厚文化底蕴和卓越教育理念的学府&#xff0c;在崭新的2024年再次敞开怀抱&#xff0c;热烈欢迎有志于深化学习、提升自我的成人学员们。今年的成人高等继续教育招生&#xff0c;不仅是学校对于终身教育理念的具体实践&#xff0c;更是为广…

每日签到页面模板组件,简单好用,用了会上瘾的那种

uni-app 是一个使用 Vue.js 开发所有前端应用的框架&#xff0c;开发者编写一套代码&#xff0c;可发布到iOS、Android、Web&#xff08;响应式&#xff09;、以及各种小程序&#xff08;微信/支付宝/百度/头条/飞书/QQ/快手/钉钉/淘宝&#xff09;、快应用等多个平台。 今日给…