数据结构与算法引入(Python)

华子目录

  • 引入
    • 第一次尝试
    • 第二次尝试
  • 算法的概念
    • 算法的五大特性
  • 算法效率衡量
    • 执行时间
      • 单靠时间值绝对可信吗?
    • 时间复杂度与 "大O记法"
      • 如何理解 “大O记法”
    • 最坏时间复杂度
    • 时间复杂度的几条基本计算规则
  • 算法分析
  • 常见的时间复杂度
  • 常见时间复杂度之间的关系
  • 数据结构与算法的关系
  • 常见的数据运算

引入

我们先来看一道题:

  • 如果 a+b+c=1000,且 a^2+b^2=c^2(a,b,c 为自然数),如何求出所有a、b、c可能的组合?

第一次尝试

  • 使用三重循环
import timestart_time = time.time()  #记录开始的时间戳(单位:秒)for a in range(0, 1001):for b in range(0, 1001):for c in range(0, 1001):if a + b + c == 1000 and a * a + b * b == c * c:print(f"组合:{a} {b} {c}")end_time = time.time()  #记录结束的时间戳(单位:秒)
print(f"运行总时间:{end_time-start_time}")
  • 运行结果

在这里插入图片描述

第二次尝试

  • 使用二重循环
import timestart_time = time.time()for a in range(0,1001):for b in range(0,1001):c = 1000-a-bif a*a + b*b==c*c:print(f"组合:{a} {b} {c}")end_time = time.time()
print(f"运行时间:{end_time-start_time}")
  • 运行结果

在这里插入图片描述

  • 我们可以很清楚的看到:第二次的执行效率更好

算法的概念

  • 算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤执行一个指定的任务。一般地,当算法在处理信息时,会从输入设备数据的存储地址读取数据,把结果写入输出设备某个存储地址供以后再调用。
  • 对于算法而言,实现的语言并不重要,重要的是思想。

算法的五大特性

  • 输入:算法具有0个或多个输入
  • 输出: 算法至少有1个或多个输出
  • 有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成
  • 确定性:算法中的每一步都有确定的含义,不会出现二义性
  • 可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成

算法效率衡量

执行时间

  • 对于同一问题,我们给出了两种解决算法,在两种算法的实现中,我们对程序执行的时间进行了测算,发现两段程序执行的时间相差悬殊(52秒相比于0.12秒),由此我们可以得出结论:实现算法程序的执行时间可以反应出算法的效率,即算法的优劣。

单靠时间值绝对可信吗?

  • 假设我们将第二次尝试的算法程序运行在一台配置古老性能低下的计算机中,情况会如何?很可能运行的时间并不会比在我们的电脑中运行算法一的52秒快多少。
  • 单纯依靠运行的时间来比较算法的优劣并不一定是客观准确的!
  • 程序的运行离不开计算机环境(包括硬件和操作系统),这些客观原因会影响程序运行的速度并反应在程序的执行时间上。那么如何才能客观的评判一个算法的优劣呢?

时间复杂度与 “大O记法”

  • 对于算法的时间效率,我们可以用“大O记法”来表示。
  • “大O记法”:对于单调的整数函数f,如果存在一个整数函数g实常数c>0,使得对于充分大的n总有f(n)<=c*g(n),就说函数g是f的一个渐近函数忽略常数),记为f(n)=O(g(n))。也就是说,在趋向无穷的极限意义下,函数f的增长速度受到函数g的约束,亦即函数f与函数g的特征相似。
  • 时间复杂度:假设存在函数g,使得算法A处理规模为n的问题示例所用时间为T(n)=O(g(n)),则称O(g(n))算法A渐近时间复杂度,简称时间复杂度记为T(n)

如何理解 “大O记法”

  • 对于算法进行特别具体的细致分析虽然很好,但在实践中的实际价值有限。对于算法的时间性质和空间性质,最重要的是其数量级和趋势,这些是分析算法效率的主要部分。而计量算法基本操作数量的规模函数中那些常量因子可以忽略不计。例如,可以认为3n2100n2 属于同一个量级,如果两个算法处理同样规模实例的代价分别为这两个函数,就认为它们的效率“差不多”,都为 n2 级。

最坏时间复杂度

  • 分析算法时,存在几种可能的考虑:
    • 算法完成工作最少需要多少基本操作,即最优时间复杂度
    • 算法完成工作最多需要多少基本操作,即最坏时间复杂度
    • 算法完成工作平均需要多少基本操作,即平均时间复杂度
  • 对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作。
  • 我们主要关注算法的最坏情况,亦即最坏时间复杂度。

时间复杂度的几条基本计算规则

  • 基本操作,即只有常数项,认为其时间复杂度为O(1)
  • 顺序结构,时间复杂度按加法进行计算
  • 循环结构,时间复杂度按乘法进行计算
  • 分支结构,时间复杂度取最大值
  • 判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项常数项可以忽略
  • 没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度

算法分析

  • 第一次尝试的算法核心部分
for a in range(0, 1001):for b in range(0, 1001):for c in range(0, 1001):if a + b + c == 1000 and a * a + b * b == c * c:print(f"组合:{a} {b} {c}")
  • 时间复杂度T(n) = O(n*n*n) = O(n3)

  • 第二次尝试的算法核心部分

for a in range(0,1001):for b in range(0,1001):c = 1000-a-bif a*a + b*b==c*c:print(f"组合:{a} {b} {c}")
  • 时间复杂度T(n) = O(n*n*(1+1)) = O(n*n) = O(n2)
  • 由此可见,我们尝试的第二种算法要比第一种算法的时间复杂度好多的。

常见的时间复杂度

在这里插入图片描述

常见时间复杂度之间的关系

在这里插入图片描述

  • 所消耗时间从小到大

在这里插入图片描述
在这里插入图片描述

数据结构与算法的关系

  • 程序 = 数据结构 + 算法
  • 总结算法是为了解决实际问题而设计的,数据结构算法需要处理的问题载体

常见的数据运算

  • 插入
  • 删除
  • 修改
  • 查找
  • 排序

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/32142.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024最新版DataGrip安装教程-全网最全教程!!!

1.DataGrip下载安装 1.打开DataGrip官网&#xff0c;选择自己需要的版本下载即可&#xff1a; 2.进行安装&#xff1a; 3.重启打开&#xff1a; 我这个是正版激活码激活的&#xff0c;需要教程可以关注留言

[Redis]持久化机制

众所周知&#xff0c;Redis是内存数据库&#xff0c;也就是把数据存在内存上&#xff0c;读写速度很快&#xff0c;但是&#xff0c;内存的数据容易丢失&#xff0c;为了数据的持久性&#xff0c;还得把数据存储到硬盘上 也就是说&#xff0c;内存有一份数据&#xff0c;硬盘也…

RuoYi Swagger请求401

问题描述&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 使用ruoyi-vue分离版&#xff0c;访问swagger&#xff0c;发现接口都调用失败&#xff1a;401 解决方案&#xff1a; 最终解决问题如下步骤&#xff1a; 1、 调用swagger中的接口&#xff0c;报错&a…

【Mysql】DQL操作单表、创建数据库、排序、聚合函数、分组、limit关键字

DQL操作单表 1.1 创建数据库 •创建一个新的数据库 db2 CREATE DATABASE db2 CHARACTER SET utf8;•将db1数据库中的 emp表 复制到当前 db2数据库 ** 1.2 排序** 通过 ORDER BY 子句,可以将查询出的结果进行排序 (排序只是显示效果,不会影响真实数据) 语法结构&#xff1a;…

算法:渐进记号的含义及时间复杂度计算

渐进记号及时间复杂度计算 渐近符号渐近记号 Ω \Omega Ω渐进记号 Θ \Theta Θ渐进记号小 ο \omicron ο渐进记号小 ω \omega ω渐进记号大 O \Omicron O常见的时间复杂度关系 时间复杂度计算&#xff1a;递归方程代入法迭代法套用公式法 渐近符号 渐近记号 Ω \Omega Ω …

每天写java到期末考试--接口1--基础--6.22

规则&#xff1a; 练习&#xff1a; 抽象类的抽象方法 动物类Animal package 期末复习;public abstract class Animal {private String name;private int age;//1.空构造public Animal(){}public Animal(String name,int age){this.ageage;this.namename;}public String getNa…

【C++提高编程-11】----C++ STL常用集合算法

&#x1f3a9; 欢迎来到技术探索的奇幻世界&#x1f468;‍&#x1f4bb; &#x1f4dc; 个人主页&#xff1a;一伦明悦-CSDN博客 ✍&#x1f3fb; 作者简介&#xff1a; C软件开发、Python机器学习爱好者 &#x1f5e3;️ 互动与支持&#xff1a;&#x1f4ac;评论 &…

Nginx 负载均衡实现上游服务健康检查

Nginx 负载均衡实现上游服务健康检查 Author&#xff1a;Arsen Date&#xff1a;2024/06/20 目录 Nginx 负载均衡实现上游服务健康检查 前言一、Nginx 部署并新增模块二、健康检查配置2.1 准备 nodeJS 应用程序2.2 Nginx 配置负载均衡健康检查 小结 前言 如果你使用云负载均衡…

【Linux】 yum学习

yum介绍 在Linux系统中&#xff0c;yum&#xff08;Yellowdog Updater, Modified&#xff09;是一个用于管理软件包的命令行工具&#xff0c;特别适用于基于RPM&#xff08;Red Hat Package Manager&#xff09;的系统&#xff0c;如CentOS、Fedora和Red Hat Enterprise Linux…

【Arduino】实验使用ESP32单片机根据光线变化控制LED小灯开关(图文)

今天小飞鱼继续来实验ESP32的开发&#xff0c;这里使用关敏电阻来配合ESP32做一个我们平常接触比较多的根据光线变化开关灯的实验。当白天时有太阳光&#xff0c;则把小灯关闭&#xff1b;当光线不好或者黑天时&#xff0c;自动打开小灯。 int value;void setup() {pinMode(34…

音视频开发29 FFmpeg 音频编码- 流程以及重要API,该章节使用AAC编码说明

此章节的一些参数&#xff0c;需要先掌握aac的一些基本知识&#xff1a;​​​​​​aac音视频开发13 FFmpeg 音频 --- 常用音频格式AAC&#xff0c;AAC编码器&#xff0c; AAC ADTS格式 。_ffmpeg aac data数据格式-CSDN博客 目的&#xff1a; 从本地⽂件读取PCM数据进⾏AAC格…

【CARD】多变化字幕的上下文感知差异提炼(ACL 2024)

摘要 Multi-change captioning旨在用自然语言描述图像对中的复杂变化。和图像字幕相比&#xff0c;这个任务要求模型具有更高层次的认知能力来推理任意数量的变化。本文提出一种新的上下文感知差异提取网络&#xff08;CARD&#xff09;。给定一个图像对&#xff0c;CARD首先解…

Multigranularity and MultiscaleProgressive Contrastive Learning

这篇文章将一张图片划分为四个不同细粒度大小的图片&#xff0c;然后输出四个神经网络&#xff0c;这四个神经网络共享权重&#xff0c;得到四个输出&#xff0c;将这四个输出求交叉熵损失和对比学习损失&#xff0c;共同监督模型学习。 通过对比学习&#xff0c;最大化一个Bat…

Microsoft Edge无法启动搜索问题的解决

今天本来想清一下电脑&#xff0c;看到visual studio2022没怎么用了就打算卸载掉。然后看到网上有篇文章说进入C盘的ProgramFiles&#xff08;x86&#xff09;目录下的microsoft目录下的microsoft visual studio目录下的install目录中&#xff0c;双击InstallCleanup.exe&#…

Windows环境利用 OpenCV 中 CascadeClassifier 分类器识别人脸 c++

Windows环境中配置OpenCV 关于在Windows环境中配置opencv的说明&#xff0c;具体可以参考&#xff1a;VS2022 配置OpenCV开发环境详细教程。 CascadeClassifier 分类器 CascadeClassifier 是 OpenCV 库中的一个类&#xff0c;它用于实现一种快速的物体检测算法&#xff0c;称…

API接口技术开发分享;按关键字搜索淘宝、天猫商品API返回值接入说明

淘宝数据API的接入流程主要包括注册key账号、创建开发者应用、获取ApiKey和ApiSecret、申请API权限等步骤。淘通过这些接口可以获取商品、订单、用户、营销和物流管理等多方面的数据。以下是关于淘宝数据API接入流程的相关介绍&#xff1a; 注册key账号&#xff1a;进行账号注册…

JAVA医院绩效考核系统源码 功能特点:大型医院绩效考核系统源码

JAVA医院绩效考核系统源码 功能特点&#xff1a;大型医院绩效考核系统源码 医院绩效管理系统主要用于对科室和岗位的工作量、工作质量、服务质量进行全面考核&#xff0c;并对科室绩效工资和岗位绩效工资进行核算的系统。医院绩效管理系统开发主要用到的管理工具有RBRVS、DRGS…

AUCell和AddModuleScore函数进行基因集评分

AUCell 和AddModuleScore 分析是两种主流的用于单细胞RNA测序数据的基因集活性分析的方法。这些基因集可以来自文献、数据库或者根据具体研究问题进行自行定义。 AUCell分析原理&#xff1a; 1、AUCell分析可以将细胞中的所有基因按表达量进行排序&#xff0c;生成一个基因排…

Unity核心

回顾 Unity核心学习的主要内容 项目展示 基础知识 认识模型制作流程 2D相关 图片导入设置相关 图片导入概述 参数设置——纹理类型 参数设置——纹理形状 参数设置——高级设置 参数设置——平铺拉伸 参数设置——平台设置&#xff08;非常重要&#xff09; Sprite Sprite Edit…

【Apache Doris】周FAQ集锦:第 7 期

【Apache Doris】周FAQ集锦&#xff1a;第 7 期 SQL问题数据操作问题运维常见问题其它问题关于社区 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目&#xff01; 在这个栏目中&#xff0c;每周将筛选社区反馈的热门问题和话题&#xff0c;重点回答并进行深入探讨。旨在为广大用户和…