算法:渐进记号的含义及时间复杂度计算

渐进记号及时间复杂度计算

渐近符号

渐近记号 Ω \Omega Ω

   f ( n ) = Ω ( g ( n ) ) f(n)=\Omega(g(n)) f(n)=Ω(g(n)) 当且仅当存在正的常数C和 n 0 n_0 n0,使得对于所有的 n ≥ n 0 n≥ n_0 nn0 ,有 f ( n ) ≥ C ( g ( n ) ) f(n)≥C(g(n)) f(n)C(g(n))。此时,称 g ( n ) g(n) g(n) f ( n ) f(n) f(n)的下界。
  根据符号 Ω \Omega Ω的定义,用它评估算法的复杂度得到的是问题规模充分大时的一个下界。这个下界的阶越高,评估越精确,越有价值。

例:设 f ( n ) = n 2 + n f(n)=n^2+n f(n)=n2+n,则
f ( n ) = Ω ( n 2 ) f(n)=\Omega(n^2) f(n)=Ω(n2),取 c = 1 , n 0 = 1 c=1,n_0=1 c=1,n0=1 即可
f ( n ) = Ω ( 100 n ) f(n)=\Omega(100n) f(n)=Ω(100n),取 c = 1 / 100 , n 0 = 1 c=1/100,n_0=1 c=1/100,n0=1 即可
显然, Ω ( n 2 ) \Omega(n^2) Ω(n2)作为下界更为精确。

渐进记号 Θ \Theta Θ

   f ( n ) = Θ ( g ( n ) ) f(n)=\Theta(g(n)) f(n)=Θ(g(n)) 当且仅当存在正常数和 C 1 , C 2 , n 0 C_1,C_2,n_0 C1,C2,n0,使得对于所有的 n ≥ n 0 n≥n_0 nn0, 有 C 1 ( g ( n ) ) ≤ f ( n ) ≤ C 2 ( g ( n ) ) C_1(g(n))≤f(n)≤ C_2(g(n)) C1(g(n))f(n)C2(g(n))。此时,称 f ( n ) f(n) f(n) g ( n ) g(n) g(n)同阶。
  这种渐进符号是指,当问题规模足够大的时候,算法的运行时间将主要取决于时间表达式的第一项,其它项的执行时间可以忽略不计。第一项的常数系数,随着n的增大,对算法的执行时间也变得不重要了。

例: 3 n + 2 = Θ ( n ) 3n+2= Θ(n) 3n+2=Θ(n)
10 n 2 + 4 n + 2 = Θ ( n 2 ) 10n^2+4n+2= Θ(n^2) 10n2+4n+2=Θ(n2)
5 × 2 n + n 2 = Θ ( 2 n ) 5×2^n+n^2= Θ(2^n) 5×2n+n2=Θ(2n)

渐进记号小 ο \omicron ο

   f ( n ) = ο ( g ( n ) ) f(n)=\omicron(g(n)) f(n)=ο(g(n))当且仅当 f ( n ) = ο ( g ( n ) ) f(n)=\omicron(g(n)) f(n)=ο(g(n)) g ( n ) ≠ ο ( f ( n ) ) g(n)\neq \omicron(f(n)) g(n)=ο(f(n)),此时, g ( n ) g(n) g(n) f ( n ) f(n) f(n)的一个绝对上界。
  小 ο \omicron ο提供的上界可能是渐近紧确的,也可能是非紧确的。(如: 2 n 2 = ο ( n 2 ) 2n^2=\omicron(n^2) 2n2=ο(n2)是渐近紧确的,而 2 n = ο ( n 2 ) 2n=\omicron(n^2) 2n=ο(n2)是非紧确上界。

例: 4 n l o g n + 7 = ο ( n 2 ) 4nlogn + 7= \omicron(n^2) 4nlogn+7=ο(n2)

渐进记号小 ω \omega ω

   f ( n ) = ω ( g ( n ) ) f(n)=\omega(g(n)) f(n)=ω(g(n))当且仅当 f ( n ) = ω ( g ( n ) ) f(n)=\omega(g(n)) f(n)=ω(g(n)) g ( n ) ≠ ω ( f ( n ) ) g(n)\neq \omega(f(n)) g(n)=ω(f(n)),此时, g ( n ) g(n) g(n) f ( n ) f(n) f(n)的一个绝对下界。
   ω \omega ω表示一个非渐进紧确的下界。

例: f ( n ) = n 2 + n f(n)=n^2+n f(n)=n2+n,则 f ( n ) = f(n)= f(n)=\omega ( n ) (n) (n)是正确的, f ( n ) = f(n)= f(n)=\omega ( n 2 ) (n^2) (n2)是错误的。

渐进记号大 O \Omicron O

  设 f ( n ) f(n) f(n) g ( n ) g(n) g(n) 是定义域为自然数集上的函数。若存在正数 c c c n 0 n_0 n0c和n_0c,使得对一切 n ≥ n 0 n≥ n_0 nn0 都有 0 ≤ f ( n ) ≤ c g ( n ) 0 ≤ f(n) ≤ cg(n) 0f(n)cg(n)成立,则称 f ( n ) f(n) f(n)的渐进的上界是 g ( n ) g(n) g(n),记作 f ( n ) = O g ( n ) f(n)=\Omicron g(n) f(n)=Og(n)
  根据符号大 O \Omicron O的定义,用它评估算法的复杂度得到的只是问题规模充分大时的一个上界。这个上界的阶越低,评估越精确,越有价值。

例:设 f ( n ) = n 2 + n f(n)=n^2+n f(n)=n2+n,有
f ( n ) = O ( n 2 ) f(n)=\Omicron(n^2) f(n)=O(n2),取 c = 2 , n 0 = 1 c=2,n_0=1 c=2,n0=1即可
f ( n ) = O ( n 3 ) f(n)=\Omicron(n^3) f(n)=O(n3),取 c = 1 , n 0 = 2 c=1,n_0=2 c=1,n0=2即可

常见的时间复杂度关系

O(1)<O(log(n))<O(n)<O(nlogn)<O(n^{2})

   O ( 2 n ) O(2^{n}) O(2n) O ( n ! ) O(n!) O(n!)大于以上的所有时间复杂度,具体原因参考图像。

时间复杂度计算:递归方程

  加、减、乘、除、比较、赋值等操作,一般被看作是基本操作,并约定所用的时间都是一个单位时间;通过计算这些操作分别执行了多少次来确定程序总的执行步数。一般来说,算法中关键操作的执行次数决定了算法的时间复杂度。
  比较简单的算法时间复杂性估计通常需要观察在for、while循环中的关键操作执行次数,在这里我们只讨论一种比较复杂的时间复杂度计算问题:求递归方程解的渐近阶的方法。递归式就是一个等式,代表了递归算法运算时间和n的关系,通过更小输入的函数值来描述一个函数。那么如何求得递归算法的Θ渐进界呢?主要有三种方法。

代入法

  代入法是指自己猜测一个界,然后用数学归纳法进行验证是否正确,这种猜测主要靠经验,不常用。

迭代法

  迭代法是指循环地展开递归方程,然后把递归方程转化为和式,使用求和技术解之。

套用公式法

  这个方法为估计形如: T ( n ) = a T ( n / b ) + f ( n ) T(n)=aT(n/b)+f(n) T(n)=aT(n/b)+f(n) 的递归方程解的渐近阶提供三个可套用的公式。要求其中的a≥1和b>1是常数,f(n)是一个确定的正函数。那么在三种情况下,我们可以得到T(n)的渐进估计式,懒得打公式,所以截图。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/32130.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

每天写java到期末考试--接口1--基础--6.22

规则&#xff1a; 练习&#xff1a; 抽象类的抽象方法 动物类Animal package 期末复习;public abstract class Animal {private String name;private int age;//1.空构造public Animal(){}public Animal(String name,int age){this.ageage;this.namename;}public String getNa…

【C++提高编程-11】----C++ STL常用集合算法

&#x1f3a9; 欢迎来到技术探索的奇幻世界&#x1f468;‍&#x1f4bb; &#x1f4dc; 个人主页&#xff1a;一伦明悦-CSDN博客 ✍&#x1f3fb; 作者简介&#xff1a; C软件开发、Python机器学习爱好者 &#x1f5e3;️ 互动与支持&#xff1a;&#x1f4ac;评论 &…

Nginx 负载均衡实现上游服务健康检查

Nginx 负载均衡实现上游服务健康检查 Author&#xff1a;Arsen Date&#xff1a;2024/06/20 目录 Nginx 负载均衡实现上游服务健康检查 前言一、Nginx 部署并新增模块二、健康检查配置2.1 准备 nodeJS 应用程序2.2 Nginx 配置负载均衡健康检查 小结 前言 如果你使用云负载均衡…

【Linux】 yum学习

yum介绍 在Linux系统中&#xff0c;yum&#xff08;Yellowdog Updater, Modified&#xff09;是一个用于管理软件包的命令行工具&#xff0c;特别适用于基于RPM&#xff08;Red Hat Package Manager&#xff09;的系统&#xff0c;如CentOS、Fedora和Red Hat Enterprise Linux…

【Arduino】实验使用ESP32单片机根据光线变化控制LED小灯开关(图文)

今天小飞鱼继续来实验ESP32的开发&#xff0c;这里使用关敏电阻来配合ESP32做一个我们平常接触比较多的根据光线变化开关灯的实验。当白天时有太阳光&#xff0c;则把小灯关闭&#xff1b;当光线不好或者黑天时&#xff0c;自动打开小灯。 int value;void setup() {pinMode(34…

音视频开发29 FFmpeg 音频编码- 流程以及重要API,该章节使用AAC编码说明

此章节的一些参数&#xff0c;需要先掌握aac的一些基本知识&#xff1a;​​​​​​aac音视频开发13 FFmpeg 音频 --- 常用音频格式AAC&#xff0c;AAC编码器&#xff0c; AAC ADTS格式 。_ffmpeg aac data数据格式-CSDN博客 目的&#xff1a; 从本地⽂件读取PCM数据进⾏AAC格…

【CARD】多变化字幕的上下文感知差异提炼(ACL 2024)

摘要 Multi-change captioning旨在用自然语言描述图像对中的复杂变化。和图像字幕相比&#xff0c;这个任务要求模型具有更高层次的认知能力来推理任意数量的变化。本文提出一种新的上下文感知差异提取网络&#xff08;CARD&#xff09;。给定一个图像对&#xff0c;CARD首先解…

Multigranularity and MultiscaleProgressive Contrastive Learning

这篇文章将一张图片划分为四个不同细粒度大小的图片&#xff0c;然后输出四个神经网络&#xff0c;这四个神经网络共享权重&#xff0c;得到四个输出&#xff0c;将这四个输出求交叉熵损失和对比学习损失&#xff0c;共同监督模型学习。 通过对比学习&#xff0c;最大化一个Bat…

Microsoft Edge无法启动搜索问题的解决

今天本来想清一下电脑&#xff0c;看到visual studio2022没怎么用了就打算卸载掉。然后看到网上有篇文章说进入C盘的ProgramFiles&#xff08;x86&#xff09;目录下的microsoft目录下的microsoft visual studio目录下的install目录中&#xff0c;双击InstallCleanup.exe&#…

Windows环境利用 OpenCV 中 CascadeClassifier 分类器识别人脸 c++

Windows环境中配置OpenCV 关于在Windows环境中配置opencv的说明&#xff0c;具体可以参考&#xff1a;VS2022 配置OpenCV开发环境详细教程。 CascadeClassifier 分类器 CascadeClassifier 是 OpenCV 库中的一个类&#xff0c;它用于实现一种快速的物体检测算法&#xff0c;称…

API接口技术开发分享;按关键字搜索淘宝、天猫商品API返回值接入说明

淘宝数据API的接入流程主要包括注册key账号、创建开发者应用、获取ApiKey和ApiSecret、申请API权限等步骤。淘通过这些接口可以获取商品、订单、用户、营销和物流管理等多方面的数据。以下是关于淘宝数据API接入流程的相关介绍&#xff1a; 注册key账号&#xff1a;进行账号注册…

JAVA医院绩效考核系统源码 功能特点:大型医院绩效考核系统源码

JAVA医院绩效考核系统源码 功能特点&#xff1a;大型医院绩效考核系统源码 医院绩效管理系统主要用于对科室和岗位的工作量、工作质量、服务质量进行全面考核&#xff0c;并对科室绩效工资和岗位绩效工资进行核算的系统。医院绩效管理系统开发主要用到的管理工具有RBRVS、DRGS…

AUCell和AddModuleScore函数进行基因集评分

AUCell 和AddModuleScore 分析是两种主流的用于单细胞RNA测序数据的基因集活性分析的方法。这些基因集可以来自文献、数据库或者根据具体研究问题进行自行定义。 AUCell分析原理&#xff1a; 1、AUCell分析可以将细胞中的所有基因按表达量进行排序&#xff0c;生成一个基因排…

Unity核心

回顾 Unity核心学习的主要内容 项目展示 基础知识 认识模型制作流程 2D相关 图片导入设置相关 图片导入概述 参数设置——纹理类型 参数设置——纹理形状 参数设置——高级设置 参数设置——平铺拉伸 参数设置——平台设置&#xff08;非常重要&#xff09; Sprite Sprite Edit…

【Apache Doris】周FAQ集锦:第 7 期

【Apache Doris】周FAQ集锦&#xff1a;第 7 期 SQL问题数据操作问题运维常见问题其它问题关于社区 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目&#xff01; 在这个栏目中&#xff0c;每周将筛选社区反馈的热门问题和话题&#xff0c;重点回答并进行深入探讨。旨在为广大用户和…

软件测试质量度量之 “三级指标体系”

管理学大师彼得 - 德鲁克曾说过&#xff1a;无数据不管理。 数字是人们快速认知事物的一种有效方式。无论在生活还是工作&#xff0c;对事还是对人都息息相关。碰上难以的用数字描述事物或现象肯定是没有找对适用的指标和度量方式。尤其对于质量工程方面的工作&#xff0c;定量…

喂饭教程:AI生成100套Word题库阿里云百炼实训营

郭震原创&#xff0c;手撸码字187022张图 你好&#xff0c;我是郭震 1 实际需求 前段时间&#xff0c;有个关注我的粉丝联系我&#xff0c;是一位大学计算机女老师。 她想做一个二级考试题库&#xff0c;选择题实操题&#xff0c;最好100套以上&#xff0c;拿来给学生练手。 问…

解两道四年级奥数题(等差数列)玩玩

1、1&#xff5e;200这200个连续自然数的全部数字之和是________。 2、2&#xff0c;4&#xff0c;6&#xff0c;……&#xff0c;2008这些偶数的所有各位数字之和是________。 这两道题算易错吧&#xff0c;这里求数字之和&#xff0c;比如124这个数的全部数字之和是1247。 …

【ClickHouse】副本、分片集群 (六)

副本 副本的目的主要是保障数据的高可用性&#xff0c;即使一台ClickHouse节点宕机&#xff0c;那么也可以从其他服务器获得相同的数据。 https://clickhouse.tech/docs/en/engines/table-engines/mergetree-family/replication/ 副本写入流程 写入流程如图-18所示: 图-18 写…

CATIA_DELMIA_V5R2019安装包下载及安装教程破解

以下为V5-6R2019安装说明 1.将两卷安装文件解压到同一目录内&#xff0c;互相覆盖即可 &#xff08;按用户需要下载 CATIA 或者DELMIA&#xff09; 以上为 CATIA 的安装包 以上为 DELMIA 的安装包 两者合并到一起&#xff0c;同一目录 2.解压后运行setup.exe 如遇到报错&…