给PDF添加书签的通解-姜萍同款《偏微分方程》改造手记

背景

网上找了一本姜萍同款的《偏微分方程》,埃文斯,英文版,可惜没有书签,洋洋七百多页,没有书签,怎么读?用福昕编辑器自然能手工一个个加上,可是劳神费力,非程序员所为。

实现

采用pdfbox即可完成,关键是要准备好目录文件。目录文件每行最后一个数字为页码。

package com.icool.command;import java.io.*;
import java.util.ArrayList;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;import org.apache.commons.lang3.StringUtils;
import org.apache.pdfbox.Loader;
import org.apache.pdfbox.pdmodel.PDDocument;
import org.apache.pdfbox.pdmodel.PageMode;
import org.apache.pdfbox.pdmodel.interactive.documentnavigation.destination.PDPageDestination;
import org.apache.pdfbox.pdmodel.interactive.documentnavigation.destination.PDPageFitWidthDestination;
import org.apache.pdfbox.pdmodel.interactive.documentnavigation.outline.PDDocumentOutline;
import org.apache.pdfbox.pdmodel.interactive.documentnavigation.outline.PDOutlineItem;import com.beust.jcommander.Parameter;
import com.beust.jcommander.Parameters;
import com.google.auto.service.AutoService;
import com.icool.core.Command;
import lombok.extern.slf4j.Slf4j;import static com.icool.command.CLI.MODIFY_CMD;/*** @Author: 西山口小老头* @Date: 2023/8/4 21:17*/class Bookmark {int pageNo;String title;public Bookmark(int pageNo, String title){this.pageNo = pageNo;this.title = title;}
}@AutoService(Command.class)
@Parameters(commandNames = {MODIFY_CMD},commandDescription = "fetch some articles from website."
)
@Slf4j
public class ModifyCommand implements Command{@Parameter(names = { "--pdfFile", "-i" })public String pdfFile;@Parameter(names = { "--output", "-o" })public String outputFile;@Parameter(names = { "--toc", "-t" })public String toc;public List<Bookmark> bookmarks;public ModifyCommand() {bookmarks = new ArrayList<>();}public void loadTOC() {try {BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(toc)));String line = null;int offset = 0;int pageNo = 0;String title = null;while ((line = br.readLine()) != null) {line = line.trim();log.debug(line);if (line.length() == 0) continue;String pattern = "";String[] fields = line.split(" ");String lastField = fields[fields.length - 1];if (line.startsWith("OFFSET")) {offset = Integer.parseInt(line.split(" ")[1]);} else {// 有的页码号在第一位,有的在最后一位if (StringUtils.isNumeric(lastField)) {pageNo = offset + Integer.parseInt(lastField);//title = line.substring(0, line.lastIndexOf(" ")).trim() + "............" + lastField;title = line.substring(0, line.lastIndexOf(" ")).trim();} else {pageNo = offset + Integer.parseInt(fields[0]);title = line.substring(line.indexOf(" ") + 1).trim();}bookmarks.add(new Bookmark(pageNo, title));}}} catch (Exception ex) {ex.printStackTrace();}}@Overridepublic void execute() throws CommandException {loadTOC();try(PDDocument document = Loader.loadPDF(new File(pdfFile))) {PDDocumentOutline documentOutline = document.getDocumentCatalog().getDocumentOutline();if (documentOutline == null) {documentOutline = new PDDocumentOutline();document.getDocumentCatalog().setDocumentOutline(documentOutline);}for (Bookmark bookmark: bookmarks) {PDPageDestination pageDestination = new PDPageFitWidthDestination();pageDestination.setPage(document.getPage(bookmark.pageNo));PDOutlineItem bm = new PDOutlineItem();bm.setDestination(pageDestination);bm.setTitle(bookmark.title);documentOutline.addLast(bm);}documentOutline.openNode();document.getDocumentCatalog().setPageMode(PageMode.USE_OUTLINES);document.save(new File(outputFile));}catch (IOException ex) {ex.printStackTrace();}}
}

配套的目录文件如下:

OFFSET 12
Preface to second edition 1
Preface to first edition 3
OFFSET 17
1. Introduction 1
1.1. Partial differential equations 1
1.2. Examples 3
1.2.1. Single partial differential equations 3
1.2.2. Systems of partial differential equations 6 
1.3. Strategies for studying PDE 6
1.3.1. Well-posed problems, classical solutions 7
1.3.2. Weak solutions and regularity 7
1.3.3. Typical difficulties 9 
1.4. Overview 9 
1.5. Problems 12 
1.6. References 13PART I: REPRESENTATION FORMULAS FOR SOLUTIONS 14
OFFSET 15
2. Four Important Linear PDE 17
2.1. Transport equation 18
2.1.1. Initial-value problem 18
2.1.2. Nonhomogeneous problem 19 
2.2. Laplace's equation 20
2.2.1. Fundamental solution 21 
2.2.2. Mean-value formulas 25
2.2.3. Properties of harmonic functions 26 
2.2.4. Green's function 33
2.2.5. Energy methods 41 
2.3. Heat equation 44
2.3.1. Fundamental solution 45 
2.3.2. Mean-value formula 51 
2.3.3. Properties of solutions 55 
2.3.4. Energy methods 62
2.4. Wave equation 65 
2.4.1. Solution by spherical means 67 
2.4.2. Nonhomogeneous problem 80 
2.4.3. Energy methods 82
2.5. Problems 84
2.6. References 90 
3. Nonlinear First-Order PDE 91
3.1. Complete integrals, envelopes 92 
3.1.1. Complete integrals 92 
3.1.2. New solutions from envelopes 94
3.2. Characteristics 96
3.2.1. Derivation of characteristic ODE 96
3.2.2. Examples 99
3.2.3. Boundary conditions 102 
3.2.4. Local solution 105
3.2.5. Applications 109 
3.3. Introduction to Hamilton-Jacobi equations 114 
3.3.1. Calculus of variations, Hamilton's ODE 115 
3.3.2. Legendre transform, Hopf-Lax formula 120
3.3.3. Weak solutions, uniqueness 128 
3.4. Introduction to conservation laws 135
3.4.1. Shocks, entropy condition 136 
3.4.2. Lax-Oleinik formula 143
3.4.3. Weak solutions, uniqueness 148
3.4.4. Riemann's problem 153
3.4.5. Long time behavior 156 
3.5. Problems 161
3.6. References 165
4. Other Ways to Represent Solutions 167 
4.1. Separation of variables 167
4.1.1. Examples 168
4.1.2. Application: Turing instability 172 
4.2. Similarity solutions 176
4.2.1. Plane and traveling waves, solitons 176
4.2.2. Similarity under scaling 185 
4.3. Transform methods 187
4.3.1. Fourier transform 187 
4.3.2. Radon transform 196 
4.3.3. Laplace transform 203
4.4. Converting nonlinear into linear PDE 206 
4.4.1. Cole-Hopf transformation 206 
4.4.2. Potential functions 208
4.4.3. Hodograph and Legendre transforms 209 
4.5. Asymptotics 211
4.5.1. Singular perturbations 211 
4.5.2. Laplace's method 216 
4.5.3. Geometric optics, stationary phase 218
4.5.4. Homogenization 229 
4.6. Power series 232
4.6.1. Noncharacteristic surfaces 232
4.6.2. Real analytic functions 237
4.6.3. Cauchy-Kovalevskaya Theorem 239 
4.7. Problems 244
4.8. References 249
OFFSET 13
PART II: THEORY FOR LINEAR PARTIAL DIFFERENTIAL EQUATIONS 253
OFFSET 14
5. Sobolev Spaces 253 
5.1. Holder spaces 254
5.2. Sobolev spaces 255 
5.2.1. Weak derivatives 255
5.2.2. Definition of Sobolev spaces 258
5.2.3. Elementary properties 261 
5.3. Approximation 264
5.3.1. Interior approximation by smooth functions . . . 264
5.3.2. Approximation by smooth functions 265
5.3.3. Global approximation by smooth functions .... 266 
5.4. Extensions 268 
5.5. Traces 271 
5.6. Sobolev inequalities 275
5.6.1. Gagliardo-Nirenberg-Sobolev inequality 276 
5.6.2. Morrey's inequality 280 
5.6.3. General Sobolev inequalities 284
5.7. Compactness 286 
5.8. Additional topics 289
5.8.1. Poincare's inequalities 289
5.8.2. Difference quotients 291
5.8.3. Differentiability a.e 295
5.8.4. Hardy's inequality 296 
5.8.5. Fourier transform methods 297
5.9. Other spaces of functions 299
5.9.1. The space Я"1 299
5.9.2. Spaces involving time 301 
5.10. Problems 305
5.11. References 309
OFFSET 13
6. Second-Order Elliptic Equations 311 
6.1. Definitions 311
6.1.1. Elliptic equations 311
6.1.2. Weak solutions 313 
6.2. Existence of weak solutions 315 
6.2.1. Lax-Milgram Theorem 315
6.2.2. Energy estimates 317 
6.2.3. Fredholm alternative 320
6.3. Regularity 326 
6.3.1. Interior regularity 327 
6.3.2. Boundary regularity 334
6.4. Maximum principles 344 
6.4.1. Weak maximum principle 344 
6.4.2. Strong maximum principle 347 
6.4.3. Harnack's inequality 351
6.5. Eigenvalues and eigenfunctions 354 
6.5.1. Eigenvalues of symmetric elliptic operators  354 
6.5.2. Eigenvalues of nonsymmetric elliptic operators  360
6.6. Problems 365
6.7. References 370 
7. Linear Evolution Equations 371 
7.1. Second-order parabolic equations 371
7.1.1. Definitions 372
7.1.2. Existence of weak solutions 375
7.1.3. Regularity 380
7.1.4. Maximum principles 389
7.2. Second-order hyperbolic equations 398 
7.2.1. Definitions 398
7.2.2. Existence of weak solutions 401 
7.2.3. Regularity 408 
7.2.4. Propagation of disturbances 414 
7.2.5. Equations in two variables 418
7.3. Hyperbolic systems of first-order equations 421 
7.3.1. Definitions 421
7.3.2. Symmetric hyperbolic systems 423
7.3.3. Systems with constant coefficients 429 
7.4. Semigroup theory 433
7.4.1. Definitions, elementary properties 434 
7.4.2. Generating contraction semigroups 439 
7.4.3. Applications 441
7.5. Problems 446 
7.6. References 449OFFSET 10PART III: THEORY FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 453OFFSET 11
8. The Calculus of Variations 453 
8.1. Introduction 453 
8.1.1. Basic ideas 453
8.1.2. First variation, Euler-Lagrange equation 454 
8.1.3. Second variation 458
8.1.4. Systems 459 
8.2. Existence of minimizers 465
8.2.1. Coercivity, lower semicontinuity 465 
8.2.2. Convexity 467 
8.2.3. Weak solutions of Euler-Lagrange equation . . . 472 
8.2.4. Systems 475 
8.2.5. Local minimizers 480
8.3. Regularity 482 
8.3.1. Second derivative estimates 483
8.3.2. Remarks on higher regularity 486 
8.4. Constraints 488
8.4.1. Nonlinear eigenvalue problems 488 
8.4.2. Unilateral constraints, variational inequalities . 492 
8.4.3. Harmonic maps 495 
8.4.4. Incompressibility 497
8.5. Critical points 501 
8.5.1. Mountain Pass Theorem 501
8.5.2. Application to semilinear elliptic PDE 507
8.6. Invariance, Noether's Theorem 511
8.6.1. Invariant variational problems 512 
8.6.2. Noether's Theorem 513
8.7. Problems 520
8.8. References 525 9. Nonvariational Techniques 527 
9.1. Monotonicity methods 527
9.2. Fixed point methods 533 
9.2.1. Banach's Fixed Point Theorem 534
9.2.2. Schauder's, Schaefer's Fixed Point Theorems . . 538 
9.3. Method of subsolutions and supersolutions 543 
9.4. Nonexistence of solutions 547
9.4.1. Blow-up 547
9.4.2. Derrick-Pohozaev identity 551 
9.5. Geometric properties of solutions 554 
9.5.1. Star-shaped level sets 554
9.5.2. Radial symmetry 555 
9.6. Gradient flows 560
9.6.1. Convex functions on Hilbert spaces 560 
9.6.2. Subdifferentials and nonlinear semigroups .... 565 
9.6.3. Applications 571
9.7. Problems 573
9.8. References 577OFFSET 10
10. Hamilton—Jacobi Equations 579
10.1. Introduction, viscosity solutions 579 
10.1.1. Definitions 581
10.1.2. Consistency 583 
10.2. Uniqueness 586 
10.3. Control theory, dynamic programming 590
10.3.1. Introduction to optimal control theory 591 
10.3.2. Dynamic programming 592 
10.3.3. Hamilton-Jacobi-Bellman equation 594 
10.3.4. Hopf-Lax formula revisited 600
10.4. Problems 603
10.5. References 606OFFSET 9
11. Systems of Conservation Laws 609 
11.1. Introduction 609
11.1.1. Integral solutions 612
11.1.2. Traveling waves, hyperbolic systems 615 
11.2. Riemann's problem 621 
11.2.1. Simple waves 621 
11.2.2. Rarefaction waves 624
11.2.3. Shock waves, contact discontinuities 625
11.2.4. Local solution of Riemann's problem 632
11.3. Systems of two conservation laws 635 
11.3.1. Riemann invariants 635 
11.3.2. Nonexistence of smooth solutions 639
11.4. Entropy criteria 641 
11.4.1. Vanishing viscosity, traveling waves 642 
11.4.2. Entropy/entropy-flux pairs 646
11.4.3. Uniqueness for scalar conservation laws 649 
11.5. Problems 654 
11.6. References 657OFFSET 8
12. Nonlinear Wave Equations 659 
12.1. Introduction 659
12.1.1. Conservation of energy 660
12.1.2. Finite propagation speed 660 
12.2. Existence of solutions 663
12.2.1. Lipschitz nonlinearities 663 
12.2.2. Short time existence 666
12.3. Semilinear wave equations 670 
12.3.1. Sign conditions 670 
12.3.2. Three space dimensions 674 
12.3.3. Subcritical power nonlinearities 676
12.4. Critical power nonlinearity 679 
12.5. Nonexistence of solutions 686
12.5.1. Nonexistence for negative energy 687 
12.5.2. Nonexistence for small initial data 689
12.6. Problems 691 
12.7. References 696OFFSET 8
APPENDICES 697
Appendix A: Notation 697 
A.l. Notation for matrices 697
A.2. Geometric notation 698 
A.3. Notation for functions 699 
A.4. Vector-valued functions 703 
A.5. Notation for estimates 703
A.6. Some comments about notation 704Appendix B: Inequalities 705 
B.l. Convex functions 705
B.2. Useful inequalities 706Appendix C: Calculus 710 
C.l. Boundaries 710
C.2. Gauss-Green Theorem 711 
C.3. Polar coordinates, coarea formula 712 
C.4. Moving regions 713 
C.5. Convolution and smoothing 713 
C.6. Inverse Function Theorem 716 
C.7. Implicit Function Theorem 717 
C.8. Uniform convergence 718Appendix D: Functional Analysis 719 
D.l. Banach spaces 719 
D.2. Hilbert spaces 720 
D.3. Bounded linear operators 721 
D.4. Weak convergence 723 
D.5. Compact operators, Fredholm theory 724 
D.6. Symmetric operators 728Appendix E: Measure Theory 729 
E.l. Lebesgue measure 729 
E.2. Measurable functions and integration 730 
E.3. Convergence theorems for integrals 731 
E.4. Differentiation 732
E.5. Banach space-valued functions 733

此TOC文件可以从网上获得,也可以直接从PDF文件拷出来,当然不能是扫描版。主要工作是不断校对OFFSET值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/31424.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spock使用Spy来Mock内部调用的方法

使用Spy来Mock内部调用的方法 如果使用Spy不生效参考 使用前先看看哪些场景不生效,避免浪费太多时间,我曾经就是mock一个方法折腾两个小时都没弄出来,后来问了 小美智能助理 ,告诉我其中private修饰的方法不生效..我把private改成protected​ 修饰之后, 再次重启单测,立马就好…

【Nprogress】页面跳转进度条

【Nprogress】页面跳转进度条 介绍安装引入并简单使用基本用法配置项常用方法 参考文档&#xff1a; 【博主&#xff1a;码农键盘上的梦】vue使用Nprogress进度条功能实现 【博主&#xff1a;夜幕506】vue项目的进度条插件 – nprogress 【官方项目地址】https://www.npmjs.com…

Spring Boot高级配置与自定义Starter详解

介绍 Spring Boot是一个用于简化Spring应用开发的框架&#xff0c;它通过提供一系列的默认配置和自动化的功能&#xff0c;极大地降低了项目的复杂度和开发成本。本文将深入探讨Spring Boot的高级配置和自定义Starter的实现&#xff0c;帮助开发者更好地理解和应用这些特性。 …

【C语言】数据的存储

本章重点 1. 数据类型详细介绍 2. 整形在内存中的存储&#xff1a;原码、反码、补码 3. 大小端字节序介绍及判断 4. 浮点型在内存中的存储解析 Ⅰ、数据类型介绍 前面我们已经学习了基本的内置类型&#xff1a; 空间大小&#xff08;字节&#xff09; char //字…

别只看影响因子了!又1本毕业神刊偷偷被On Hold了!请谨慎投递

【SciencePub学术】昨日&#xff0c;2023JCR正式发布&#xff0c;现在影响因子的话题依旧是“热搜第一”。大家可以根据自己的研究方向&#xff0c;参考最新发布的JCR报告进行投稿选刊。若大家对于投稿选刊方面有任何问题&#xff0c;都可联系张老师为您解答&#xff01; 相关…

C++之STL(四)

1、迭代器 通过重载*、->、、--等运算符来支持指针操作。 迭代器是容器与算法的桥梁。 2、迭代器的类型 个人理解&#xff0c;迭代器是一个模板类&#xff0c;会根据你传入的类型&#xff0c;生成对应的类型。这个模板类里面存放这该类型的指针&#xff0c;里面重载了*、!…

Boom 3D软件安装包下载-Boom 3D官网最新版下载

众多使用者向我们证明了Boom3D软件31段均衡器和预设&#xff1a;均衡器允许您仅通过手指滑动来调制音频&#xff0c;并将其另存为自定义预设&#xff0c;预设已经精心设计为不同类型的歌曲&#xff0c;因此您能够简单地拨入音频以适应您的心情。相信大家都认同Boom 3D 是一款出…

189.二叉树:将有序数组转换为二叉搜索树(力扣)

代码解决 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* Tre…

华为移动网络自动驾驶解决方案MAE和无线解决方案云的开发技术方案

华为移动网络自动驾驶解决方案MAE和无线解决方案云的开发技术方案 目录 引言华为移动网络自动驾驶解决方案MAE 2.1 概述2.2 关键技术2.3 架构设计2.4 典型应用场景2.5 开发工具和环境 华为无线解决方案云 3.1 概述3.2 关键技术3.3 架构设计3.4 典型应用场景3.5 开发工具和环境…

AI选美大赛揭晓10位入围AI佳丽

全球首届AI小姐选美大赛&#xff08;WAICAs&#xff09;于上月拉开帷幕&#xff0c;总奖池积累到1.6万英镑&#xff0c;1万余名AI创作者参与&#xff0c;报送了超过1500个AI角色参加这场比赛。WAICAs 全称是未来派世界人工智能创造者大奖&#xff0c;由 Fanvue 主办。日前&…

qt打包失败 ,应用程序无法正常启动0xc000007b解决办法

用 windeployqt 打包QT程序&#xff0c;运行时提示程序无法正常启动0xc000007b #原因&#xff1a;因本机装了多个版本的Qt&#xff0c;包括32位&#xff0c;64位的&#xff0c;在cmd下可能是环境变量原因&#xff0c;用 windeployqt 打的包无法运行 解决办法&#xff1a; 1、…

以餐厅为例,来谈谈VOC(客户之声)

VOC&#xff0c;即客户之声&#xff0c;是指通过收集和分析客户的反馈意见&#xff0c;了解他们的需求和期望&#xff0c;进而指导企业改进产品和服务。在餐厅经营中&#xff0c;VOC的应用不仅能够帮助餐厅了解顾客的口味偏好、用餐习惯&#xff0c;还能揭示服务流程中的不足和…

记录一个因 MYSQL 服务端和JDBC驱动版本不一致导致 HMS 启动失败问题

记录一个因 MYSQL 服务端和JDBC驱动版本不一致导致 HMS 启动失败问题 1. 问题现象 某运维同学安装 CDH 后 HIVE 服务报警&#xff0c;查看发现 HS2 的金丝雀检查失败&#xff0c;进一步查看发现&#xff0c;HS2 无法创建默认数据库&#xff0c;且 HMS 启动失败。遂找到笔者进…

MATLAB——数组类型(二)

文章目录 前言元胞数组元胞数组寻访元胞数组的操作合并删除变形 前言 本章记录一下元胞数组的相关操作。寻访、合并、删除、变形。 元胞数组 元胞数组概念及创建详见MATLAB——数组类型。 元胞数组寻访 元胞数组中单元与单元内容是两个不同的东西。因此寻访单元和寻访单元…

vue3中如何使用pinia -- pinia使用教程(一)

vue3中如何使用pinia -- pinia使用教程&#xff08;一&#xff09; 安装使用创建 store使用 store访问修改 store 使用组合式 api 创建 store -- setup storepinia 和 hook 的完美结合如何解决上面的问题 使用 hook 管理全局状态和 pinia 有何优缺点&#xff1f;参考小结 pinia…

上位机图像处理和嵌入式模块部署(mcu之iap升级)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 mcu种类很多&#xff0c;如果是开发的时候需要对固件升级&#xff0c;整体还是比较容易的。不管是dap&#xff0c;还是st-link v2、j-link&#xf…

Modbus协议转Profibus协议网关接温控表与PLC通讯

一、前言 在智能化飞速发展的时代&#xff0c;各个行业都在使用自动化系统。在智能楼宇系统中&#xff0c;温控表和PLC&#xff08;可编程逻辑控制器&#xff09;通讯是至关重要的&#xff0c;在智能楼宇系统中&#xff0c;温控表起着监测和控制室内温度的重要作用。而PLC作为…

Elasticsearch中的Term_Filter过滤器技术

文章目录 一、引言二、Term Filter的工作原理与内部机制三、Term Filter的多样化使用场景3.1 精确匹配3.2 过滤分类与标签3.3 数据范围筛选3.4 复杂查询的构建 四、Term Filter的最佳实践与应用建议4.1 避免使用分析器4.2 优化索引映射4.3 充分利用缓存4.4 持续监控性能 五、结…

【地质灾害监测实现有效预警,44人提前安全转移】

6月13日14时&#xff0c;国信华源地质灾害监测预警系统提前精准预警&#xff0c;安全转移10户44人。 该滑坡隐患点通过科学部署国信华源裂缝计、倾角加速度计、雨量计、预警广播等自动化、智能化监测预警设备&#xff0c;实现了对隐患点裂缝、位移、降雨量等关键要素的实时动态…

CyclicBarrier(应对并发问题的工具类)

CyclicBarrier 5.3.1 概述以及基本使用 CyclicBarrier的字面意思是可循环使用&#xff08;Cyclic&#xff09;的屏障&#xff08;Barrier&#xff09;。它要做的事情是&#xff0c;让一组线程到达一个屏障&#xff08;也可以叫同步点&#xff09;时被阻塞&#xff0c;直到最后…