【Python】使用OpenCV特征匹配检测图像中的【特定水印】


如果没有方向
往哪里走都是前方
做自己的光 不需要多亮
曾受过的伤 会长出翅膀
大雨冲刷过的天空会更加明亮
流过泪的眼睛也一样
做自己的光 悄悄的发亮
逆风的方向 更容易飞翔
世界怎样在于你凝视它的目光
那未曾谋面过的远方
或许就在身旁
                     🎵 虎妹Huu、承桓《做自己的光》


在图像处理中,识别和检测水印是一项重要任务,特别是在版权保护和验证领域。本文将介绍如何使用OpenCV和Python库来识别图像中的固定水印,即使水印的位置和角度可能不同。我们将使用特征匹配技术来实现这一目标。

安装所需的库

在开始之前,请确保你已经安装了必要的Python库:

pip install opencv-python numpy

代码实现

以下是完整的Python代码,展示了如何从文件夹中读取图像,增强图像颜色以凸显蓝色并降低黑白灰色的影响,然后使用特征匹配技术检测图像中的水印。

import cv2
import numpy as np
import osdef extract_images_from_folder(folder_path):"""从文件夹中读取所有PNG图像并进行预处理"""images = []filenames = []for filename in os.listdir(folder_path):if filename.lower().endswith(".png"):image_path = os.path.join(folder_path, filename)image = cv2.imread(image_path)# 调整图像大小为800x600image = cv2.resize(image, (800, 600))enhanced_image = enhance_colors(image)images.append(enhanced_image)filenames.append(filename)return images, filenamesdef detect_watermark(image, watermark_template):"""使用特征匹配检测图像中是否存在水印"""# 转换为灰度图像gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray_template = cv2.cvtColor(watermark_template, cv2.COLOR_BGR2GRAY)# 使用ORB特征检测器orb = cv2.ORB_create()# 检测关键点和描述符keypoints1, descriptors1 = orb.detectAndCompute(gray_image, None)keypoints2, descriptors2 = orb.detectAndCompute(gray_template, None)# 创建BFMatcher对象bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)# 匹配描述符matches = bf.match(descriptors1, descriptors2)# 根据匹配距离排序matches = sorted(matches, key=lambda x: x.distance)# 设定一个距离阈值,过滤较好的匹配threshold = 70  # 可能需要调整此阈值good_matches = [m for m in matches if m.distance < threshold]# 检查匹配的数量是否足够if len(good_matches) > 80:  # 你可以调整这个阈值return True, good_matcheselse:return False, Nonedef enhance_colors(image):"""增强图像中的其他颜色,降低黑、白、灰的影响"""# 将图像从BGR转换到HSVhsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)# 创建一个掩码,选择非黑白灰色区域# 定义黑色、白色和灰色的范围lower_black = np.array([0, 0, 0])upper_black = np.array([180, 255, 30])lower_white = np.array([0, 0, 200])upper_white = np.array([180, 30, 255])lower_gray = np.array([0, 0, 31])upper_gray = np.array([180, 30, 199])# 创建掩码mask_black = cv2.inRange(hsv_image, lower_black, upper_black)mask_white = cv2.inRange(hsv_image, lower_white, upper_white)mask_gray = cv2.inRange(hsv_image, lower_gray, upper_gray)# 合并掩码mask = mask_black | mask_white | mask_gray# 反转掩码mask = cv2.bitwise_not(mask)# 增强非黑白灰区域的饱和度和亮度hsv_image[:, :, 1] = np.where(mask > 0, hsv_image[:, :, 1] * 2, hsv_image[:, :, 1])  # 增强饱和度hsv_image[:, :, 2] = np.where(mask > 0, hsv_image[:, :, 2] * 1.5, hsv_image[:, :, 2])  # 增强亮度# 将图像从HSV转换回BGRenhanced_image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)return enhanced_imagedef main(folder_path, watermark_image_path):"""主函数,执行从文件夹读取图像并检测水印的流程"""images, filenames = extract_images_from_folder(folder_path)watermark_template = cv2.imread(watermark_image_path)for i, image in enumerate(images):has_watermark, good_matches = detect_watermark(image, watermark_template)if has_watermark:print(f"Watermark detected in image {filenames[i]} with {len(good_matches)} good matches")else:print(f"No watermark detected in image {filenames[i]}")if __name__ == "__main__":folder_path = "img"  # 替换为包含PNG文件的文件夹路径watermark_image_path = "test.jpg"  # 替换为你的水印图像路径main(folder_path, watermark_image_path)

样本案例

水印案例

在这里插入图片描述

测试案例

在这里插入图片描述

HSV转换之后

在这里插入图片描述

匹配结果
Watermark detected in image img_1.png with 106 good matches
Watermark detected in image img_2.png with 107 good matches
Watermark detected in image img_3.png with 147 good matches
No watermark detected in image img_4.png

代码解析

  1. extract_images_from_folder函数:

    该函数从指定文件夹中读取所有PNG图像,并将它们调整为800x600的大小。
    调用enhance_colors函数增强图像中的其他颜色,降低黑、白、灰的影响。
    返回增强后的图像列表和文件名列表。

  2. detect_watermark函数:

    使用ORB特征检测器检测图像和水印模板中的关键点和描述符。
    使用BFMatcher对象匹配描述符。
    根据匹配距离排序,并过滤较好的匹配。
    如果好的匹配数量超过一个阈值,则认为检测到了水印。

  3. enhance_colors函数:

    将图像从BGR转换到HSV颜色空间。
    定义黑、白、灰色的HSV范围,并创建掩码。
    反转掩码以选择非黑白灰色区域。
    增强非黑白灰色区域的饱和度和亮度。
    将图像从HSV转换回BGR。

  4. main函数

    从指定文件夹中读取所有图像,并调用enhance_colors函数进行处理。
    读取水印图像。
    遍历每一张图像,使用特征匹配来检测水印。
    输出每张图像是否检测到水印及其匹配的质量。

结论

通过这种方法,可以识别具有不同位置和角度的固定类型水印。使用特征匹配技术,即使水印的位置和角度有所变化,也能进行有效的识别和检测。希望这篇文章对你有所帮助。如果有任何问题或需要进一步的修改,请在评论区告诉我。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/30876.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计软件有哪些?景观插件篇,渲染100邀请码1a12

建立大型景观也是设计师常用的设计方法&#xff0c;我们介绍一些景观插件。 1、AutoGrass AutoGrass是用于快速生成逼真的草地和植被场景的3ds Max插件&#xff0c;它提供了大量的草地预设和工具&#xff0c;使用户能够轻松地创建各种各样的草地效果&#xff0c;包括草地、草…

web 腾讯地图怎么设置卫星底图??

引用腾讯地图JavaScript SDK (腾讯地图引用文档) 设置卫星底图代码如下&#xff1a;官网示例 new TMap.Map("container", {// zoom: 16, //设置地图缩放级别zoom: 17.2, //设置地图缩放级别center: new TMap.LatLng(lat, long), //设置地图中心点坐标pitch: 35, //…

EOS Black灵魂回响黑色联机需要加速吗 超好用的联机加速器推荐

灵魂回响黑色是一款全新的MMORPG游戏&#xff0c;游戏在提供沉浸感超强的剧情的同时&#xff0c;也带来了压倒性的游戏画质。同时&#xff0c;游戏的职业系统十分自由&#xff0c;从人物属性到装备属性、到技能搭配、甚至到职业都可以任意DIY&#xff0c;把角色养成发挥到了极致…

有了它,再也不用为客户管理而烦恼

在竞争激烈的市场环境中&#xff0c;有效的客户关系管理&#xff08;CRM&#xff09;系统是企业获取商机、提高成单效率的关键。搭贝CRM管理系统是基于市场业务需求量身定制的&#xff0c;通过记录客户360度画像和跟进信息&#xff0c;实现客户管理的精细化和高效流转。 &#…

关系数据理论

什么是关系数据理论&#xff1a;用来评判数据库逻辑设计“好坏程度”的标准&#xff1b;二是如果逻辑设计中存在“不好”的关系模式&#xff0c;如何将其修改为“好”的关系模式。 函数依赖&#xff1a;举个例子:学生表中&#xff0c;一个学生的学生号确定了&#xff0c;学生的…

ai创作是什么?分享ai创作的方法

ai创作是什么&#xff1f;在当今这个信息爆炸的时代&#xff0c;文字的力量愈发显得重要。无论是日常沟通还是专业创作&#xff0c;我们都需要用文字来表达自己&#xff0c;传递思想。然而&#xff0c;面对海量的信息和快速变化的世界&#xff0c;如何高效地生成高质量的文字内…

力扣SQL50 有趣的电影 简单查询

Problem: 620. 有趣的电影 Code select * from cinema where id % 2 1 and description ! boring order by rating desc;

Python-gui开发之Pycharm+pyside6/Pyqt6环境搭建

Python-gui开发之Pycharm+pyside6/Pyqt6环境搭建 软件版本一、软件安装1、Python安装2、Pycharm安装3、pyside6或pyqt6安装①安装pyside6②安装PyQt6和pyqt6-tools二、Pycharm项目配置1、插件安装2、新建项目以及环境配置3、包管理安装三、在Pycharm中配置PySide61、pyside6 Qt…

SEO之预估流量及价值(二)

初创企业搭建网站的朋友看1号文章&#xff1b;想学习云计算&#xff0c;怎么入门看2号文章谢谢支持&#xff1a; 1、我给不会敲代码又想搭建网站的人建议 2、新手上云 &#xff08;接上一篇。。。。&#xff09; 2、点击率 搜索结果页面各排名位置点击率也不精确。前面介绍的…

Java代码如何运行

通过前面的第一篇文章&#xff0c;对JVM整体脉络有了一个大概了解。第二篇文章我们通过对高级语言低级语言不同特性的探讨引出了Java的编译过程。有了前面的铺垫&#xff0c;咱们今天正式进入Java到底是如何运行起来的探讨。 目前大部分公司都是使用maven作为包管理工具&#x…

「PS图像软件下载」Adobe Photoshop专业图像处理软件资源获取!

Photoshop&#xff0c;无论是对于初学者还是资深设计师&#xff0c;Photoshop都以其易上手且深度足够的特性&#xff0c;赢得了广泛的赞誉。 在修图方面&#xff0c;Photoshop的表现尤为出色。无论是调整色彩平衡、裁剪图片&#xff0c;还是去除瑕疵、增强细节&#xff0c;Phot…

Matlab数学建模实战应用:案例4 - 图像处理

目录 前言 一、图像处理基础 二、Matlab图像处理工具箱 三、案例&#xff1a;图像锐化、去噪和分割 步骤 1&#xff1a;读取和显示图像 步骤 2&#xff1a;图像锐化 步骤 3&#xff1a;图像去噪 步骤 4&#xff1a;图像分割 完整代码示例 四、实际应用 实例总结 总…

如何选择理想CDN服务商来提升网站性能

在数字时代&#xff0c;网络速度已成为衡量网站成功的关键指标之一。快速加载的网站不仅提升用户体验&#xff0c;还对网站的搜索引擎排名产生显著影响。用户期望网站能够迅速响应其请求&#xff0c;而任何延迟都可能导致用户不满和流失。研究表明&#xff0c;网站加载时间的每…

openh264 帧级码率控制原理:RcCalculateIdrQp 函数

RcCalculateIdrQp函数 功能 在码控中&#xff0c;当eSliceType为I_SLICE时 计算 IDR 帧的帧级量化参数QP 值。 原理过程 初始化变量&#xff1a; dBpp&#xff1a;初始化为0&#xff0c;用来存储比特率每像素&#xff08;bits per pixel&#xff09;的值。i&#xff1a;一个…

人工智能驱动材料科学前沿:微软与PNNL联合推进电池材料创新

新型电池技术的研发对实现绿色能源目标具有决定性意义 微软公司与美国太平洋西北国家实验室&#xff08;PNNL&#xff09;近期开展了一项开创性的合作&#xff0c;利用尖端人工智能技术&#xff0c;在极短时间内完成对海量潜在电池材料的系统筛选。 微软和PNNL的研究团队采用了…

解决数据孤岛/计算消耗/误差累积问题,上海人工智能实验室苏锐:FengWu-GHR实现AI气象预测多重突破

「AI 方法出现之前&#xff0c;每 10 年才可以提高 1 天的气象预报技巧&#xff0c;而引入 AI 后&#xff0c;几个月就能提高预报技巧。」 在 2024 北京智源大会「AI for Science」论坛上&#xff0c;上海人工智能实验室青年研究员苏锐回顾了 AI 气象预报的历史发展&#xff0…

深入了解 AndroidX ConstraintLayout 中的 Barrier

androidx.constraintlayout.widget.Barrier&#xff08;简称Barrier&#xff09;是 ConstraintLayout 2.0 中引入的一个新特性&#xff0c;它可以极大地简化复杂布局的实现。本文将详细介绍Barrier 的概念、使用方法以及在实际开发中的应用场景。 什么是 Barrier&#xff1f; …

产品心理学:曝光效应

曝光效应&#xff08;the exposure effect or the mere exposure effect&#xff09;&#xff1a;又谓多看效应、&#xff08;简单、单纯&#xff09;暴露效应、&#xff08;纯粹&#xff09;接触效应等等。 它是一种心理现象&#xff0c;指的是我们会偏好自己熟悉的事物&#…

基于PCL实现多边形框选点云并进行裁剪(附C++源码)

文章目录 一.算法效果二.算法原理PNPoly算法直线相交性判断三.代码实现一.算法效果 通过在PCL可视化界面上绘制2D封闭多边形来提取位于该封闭多边形内部或者外部的 的点,算法效果如下: 图1多边形裁剪点云效果图 二.算法原理 PNPoly算法 2D多边形框选裁剪点云,实际上可以简…

AI交互数字人如何赋能数智教育?

随着AI交互数字人技术的飞速发展&#xff0c;教育领域正经历着前所未有的变革。AI交互数字人为教育领域注入了全新活力&#xff0c;重塑着教学模式&#xff0c;为学生带来沉浸式学习体验。 AI交互数字人在教育领域中&#xff0c;可以应用在&#xff1a; 1、个性化学习教学指导…