Elasticsearch docker 安装及基本用法

创建网络
  1. 首先通过命令创建一个网络
docker network create es-net
  1. 然后查看网络
[root@Docker ~]# docker network ls
NETWORK ID     NAME      DRIVER    SCOPE
4e315f5e3ae7   bridge    bridge    local
a501a9f3b4ee   es-net    bridge    local
ebca66b02e8c   host      host      local
d411c33133f8   none      null      local

安装包

挂载es镜像
docker load -i es.tar

查看容器是否挂载成功

[root@Docker ~]# docker images
REPOSITORY             TAG               IMAGE ID       CREATED         SIZE
rabbitmq               3.13-management   d267434c554e   3 months ago    251MB
hello-world            latest            d2c94e258dcb   13 months ago   13.3kB
seataio/seata-server   1.5.2             f6a5368b6720   23 months ago   186MB
nacos/nacos-server     v2.1.0-slim       49addbd025a1   2 years ago     322MB
mysql                  latest            3218b38490ce   2 years ago     516MB
kibana                 7.12.1            cf1c9961eeb6   3 years ago     1.06GB
elasticsearch          7.12.1            41dc8ea0f139   3 years ago     851MB
运行es容器
docker run -d \--name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--network es-net \-p 9200:9200 \-p 9300:9300 \elasticsearch:7.12.1
  1. 查看是否安装完成
  2. image.png
挂载kibana镜像
docker load -i kibana.tar

查看镜像是否挂载成功

[root@Docker ~]# docker images
REPOSITORY             TAG               IMAGE ID       CREATED         SIZE
rabbitmq               3.13-management   d267434c554e   3 months ago    251MB
hello-world            latest            d2c94e258dcb   13 months ago   13.3kB
seataio/seata-server   1.5.2             f6a5368b6720   23 months ago   186MB
nacos/nacos-server     v2.1.0-slim       49addbd025a1   2 years ago     322MB
mysql                  latest            3218b38490ce   2 years ago     516MB
kibana                 7.12.1            cf1c9961eeb6   3 years ago     1.06GB
elasticsearch          7.12.1            41dc8ea0f139   3 years ago     851MB
运行kibana容器
docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1

安装完成后,直接访问5601端口,即可看到控制台页面:

选择Explore on my own之后,进入主页面:

然后选中Dev tools,进入开发工具页面:

安装ik分词器
  1. 在线安装
docker exec -it es ./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

然后重启es容器:

docker restart es
  1. 离线安装

查看之前安装的Elasticsearch容器的plugins数据卷目录:

[root@Docker ~]# docker volume inspect es-plugins
[{"CreatedAt": "2024-06-18T19:26:45+08:00","Driver": "local","Labels": null,"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data","Name": "es-plugins","Options": null,"Scope": "local"}
]
[root@Docker ~]# 

可以看到elasticsearch的插件挂载到了/var/lib/docker/volumes/es-plugins/_data这个目录。我们需要把IK分词器上传至这个目录。
最后,重启es容器:

docker restart es
基本概念
  1. 文档和字段

elasticsearch是面向**文档(Document)**存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

{"id": 1,"title": "小米手机","price": 3499
}
{"id": 2,"title": "华为手机","price": 4999
}
{"id": 3,"title": "华为小米充电器","price": 49
}
{"id": 4,"title": "小米手环","price": 299
}

因此,原本数据库中的一行数据就是ES中的一个JSON文档;而数据库中每行数据都包含很多列,这些列就转换为JSON文档中的字段(Field)

  1. 索引和映射

随着业务发展,需要在es中存储的文档也会越来越多,比如有商品的文档、用户的文档、订单文档等等:

所有文档都散乱存放显然非常混乱,也不方便管理。因此,我们要将类型相同的文档集中在一起管理,称为索引(Index)。例如:
商品索引

{"id": 1,"title": "小米手机","price": 3499
}{"id": 2,"title": "华为手机","price": 4999
}{"id": 3,"title": "三星手机","price": 3999
}

用户索引

{"id": 101,"name": "张三","age": 21
}{"id": 102,"name": "李四","age": 24
}{"id": 103,"name": "麻子","age": 18
}

订单索引

{"id": 10,"userId": 101,"goodsId": 1,"totalFee": 294
}{"id": 11,"userId": 102,"goodsId": 2,"totalFee": 328
}
  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束

  1. mysql与elasticsearch
MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD
  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性
  • Elasticsearch:擅长海量数据的搜索、分析、计算
  1. 使用IK分词器
    IK分词器包含两种模式:
    • ik_smart:智能语义切分
    • ik_max_word:最细粒度切分
  • 标准分词器:
POST /_analyze
{"analyzer": "standard","text": "Elasticsearch官方提供的标准分词器"
}
  • 结果如下:
{"tokens" : [{"token" : "elasticsearch","start_offset" : 0,"end_offset" : 13,"type" : "<ALPHANUM>","position" : 0},{"token" : "官","start_offset" : 13,"end_offset" : 14,"type" : "<IDEOGRAPHIC>","position" : 1},{"token" : "方","start_offset" : 14,"end_offset" : 15,"type" : "<IDEOGRAPHIC>","position" : 2},{"token" : "提","start_offset" : 15,"end_offset" : 16,"type" : "<IDEOGRAPHIC>","position" : 3},{"token" : "供","start_offset" : 16,"end_offset" : 17,"type" : "<IDEOGRAPHIC>","position" : 4},{"token" : "的","start_offset" : 17,"end_offset" : 18,"type" : "<IDEOGRAPHIC>","position" : 5},{"token" : "标","start_offset" : 18,"end_offset" : 19,"type" : "<IDEOGRAPHIC>","position" : 6},{"token" : "准","start_offset" : 19,"end_offset" : 20,"type" : "<IDEOGRAPHIC>","position" : 7},{"token" : "分","start_offset" : 20,"end_offset" : 21,"type" : "<IDEOGRAPHIC>","position" : 8},{"token" : "词","start_offset" : 21,"end_offset" : 22,"type" : "<IDEOGRAPHIC>","position" : 9},{"token" : "器","start_offset" : 22,"end_offset" : 23,"type" : "<IDEOGRAPHIC>","position" : 10}]
}
  • IK分词器:ik_smart

POST /_analyze
{"analyzer": "ik_smart","text": "ik提供的标准分词器ik_smart模式"
}
  • 结果如下:
{"tokens" : [{"token" : "ik","start_offset" : 0,"end_offset" : 2,"type" : "ENGLISH","position" : 0},{"token" : "提供","start_offset" : 2,"end_offset" : 4,"type" : "CN_WORD","position" : 1},{"token" : "的","start_offset" : 4,"end_offset" : 5,"type" : "CN_CHAR","position" : 2},{"token" : "标准","start_offset" : 5,"end_offset" : 7,"type" : "CN_WORD","position" : 3},{"token" : "分词器","start_offset" : 7,"end_offset" : 10,"type" : "CN_WORD","position" : 4},{"token" : "ik_smart","start_offset" : 10,"end_offset" : 18,"type" : "LETTER","position" : 5},{"token" : "模式","start_offset" : 18,"end_offset" : 20,"type" : "CN_WORD","position" : 6}]
}
  • IK分词器:ik_max_word
POST /_analyze
{"analyzer": "ik_max_word","text": "ik提供的标准分词器ik_max_word模式"
}
  • 结果
{"tokens" : [{"token" : "ik","start_offset" : 0,"end_offset" : 2,"type" : "ENGLISH","position" : 0},{"token" : "提供","start_offset" : 2,"end_offset" : 4,"type" : "CN_WORD","position" : 1},{"token" : "的","start_offset" : 4,"end_offset" : 5,"type" : "CN_CHAR","position" : 2},{"token" : "标准分","start_offset" : 5,"end_offset" : 8,"type" : "CN_WORD","position" : 3},{"token" : "标准","start_offset" : 5,"end_offset" : 7,"type" : "CN_WORD","position" : 4},{"token" : "分词器","start_offset" : 7,"end_offset" : 10,"type" : "CN_WORD","position" : 5},{"token" : "分词","start_offset" : 7,"end_offset" : 9,"type" : "CN_WORD","position" : 6},{"token" : "器","start_offset" : 9,"end_offset" : 10,"type" : "CN_CHAR","position" : 7},{"token" : "ik_max_word","start_offset" : 10,"end_offset" : 21,"type" : "LETTER","position" : 8},{"token" : "ik","start_offset" : 10,"end_offset" : 12,"type" : "ENGLISH","position" : 9},{"token" : "max","start_offset" : 13,"end_offset" : 16,"type" : "ENGLISH","position" : 10},{"token" : "word","start_offset" : 17,"end_offset" : 21,"type" : "ENGLISH","position" : 11},{"token" : "模式","start_offset" : 21,"end_offset" : 23,"type" : "CN_WORD","position" : 12}]
}

分词器的作用是什么?

  • 创建倒排索引时,对文档分词
  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条
索引库操作
  1. Index就类似数据库表,Mapping映射就类似表的结构。我们要向es中存储数据,必须先创建Index和Mapping
  2. Mapping映射属性
  3. Mapping是对索引库中文档的约束,常见的Mapping属性包括:
  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

例如

{"age": 21,"weight": 52.1,"isMarried": false,"info": "黑马程序员Java讲师","email": "zy@itcast.cn","score": [99.1, 99.5, 98.9],"name": {"firstName": "云","lastName": "赵"}
}

对应的每个字段映射(Mapping):

| 字段名 | | 字段类型 | 类型说明 | 是否
参与搜索 | 是否
参与分词 | 分词器 |
| — | — | — | — | — | — | — |
| age | | integer | 整数 | | | —— |
| weight | | float | 浮点数 | | | —— |
| isMarried | | boolean | 布尔 | | | —— |
| info | | text | 字符串,但需要分词 | | | IK |
| email | | keyword | 字符串,但是不分词 | | | —— |
| score | | float | 只看数组中元素类型 | | | —— |
| name | firstName | keyword | 字符串,但是不分词 | | | —— |
| | lastName | keyword | 字符串,但是不分词 | | | —— |

  1. 索引库的CRUD
  2. 创建索引库和映射
    1. 基本语法
      • 请求方式:PUT
      • 请求路径:/索引库名,可以自定义
      • 请求参数:mapping映射
PUT /索引库名称
{"mappings": {"properties": {"字段名":{"type": "text","analyzer": "ik_smart"},"字段名2":{"type": "keyword","index": "false"},"字段名3":{"properties": {"子字段": {"type": "keyword"}}},// ...略}}
}
# PUT /heima
{"mappings": {"properties": {"info":{"type": "text","analyzer": "ik_smart"},"email":{"type": "keyword","index": "false"},"name":{"properties": {"firstName": {"type": "keyword"}}}}}
}
  1. 查询索引库
    1. 基本语法
      1. 请求方式:GET
      2. 请求路径:/索引库名
      3. 请求参数:无
    2. GET /索引库名
  2. 修改索引库
    • 倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping
    • 虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。因此修改索引库能做的就是向索引库中添加新字段,或者更新索引库的基础属性。
PUT /索引库名/_mapping
{"properties": {"新字段名":{"type": "integer"}}
}
PUT /heima/_mapping
{"properties": {"age":{"type": "integer"}}
}
  1. 删除索引库
    1. 语法:
    • 请求方式:DELETE
    • 请求路径:/索引库名
    • 请求参数:无
DELETE /索引库名
  1. 文档操作

有了索引库,接下来就可以向索引库中添加数据了。
Elasticsearch中的数据其实就是JSON风格的文档。操作文档自然保护增、删、改、查等几种常见操作,我们分别来学习。

  1. 新增文档
POST /索引库名/_doc/文档id
{"字段1": "值1","字段2": "值2","字段3": {"子属性1": "值3","子属性2": "值4"},
}POST /heima/_doc/1
{"info": "程序员Java讲师","email": "zy@itcast.cn","name": {"firstName": "云","lastName": "赵"}
}
  1. 查询
GET /{索引库名称}/_doc/{id}GET /heima/_doc/1
  1. 删除文档
DELETE /{索引库名}/_doc/id值DELETE /heima/_doc/1
  1. 修改文档
    1. 修改有两种方式:
    • 全量修改:直接覆盖原来的文档
    • 全量修改是覆盖原来的文档,其本质是两步操作:
    • 根据指定的id删除文档
    • 新增一个相同id的文档
PUT /{索引库名}/_doc/文档id
{"字段1": "值1","字段2": "值2",// ... 略
}PUT /heima/_doc/1
{"info": "黑马程序员高级Java讲师","email": "zy@itcast.cn","name": {"firstName": "云","lastName": "赵"}
}
  - 局部修改:修改文档中的部分字段
POST /{索引库名}/_update/文档id
{"doc": {"字段名": "新的值",}
}POST /heima/_update/1
{"doc": {"email": "ZhaoYun@itcast.cn"}
}
  1. 批处理

批处理采用POST请求,基本语法如下:

POST _bulk
{ "index" : { "_index" : "test", "_id" : "1" } }
{ "field1" : "value1" }
{ "delete" : { "_index" : "test", "_id" : "2" } }
{ "create" : { "_index" : "test", "_id" : "3" } }
{ "field1" : "value3" }
{ "update" : {"_id" : "1", "_index" : "test"} }
{ "doc" : {"field2" : "value2"} }其中:
- index代表新增操作- _index:指定索引库名- _id指定要操作的文档id- { "field1" : "value1" }:则是要新增的文档内容
- delete代表删除操作- _index:指定索引库名- _id指定要操作的文档id
- update代表更新操作- _index:指定索引库名- _id指定要操作的文档id- { "doc" : {"field2" : "value2"} }:要更新的文档字段批量新增:POST /_bulk
{"index": {"_index":"heima", "_id": "3"}}
{"info": "黑马程序员C++讲师", "email": "ww@itcast.cn", "name":{"firstName": "五", "lastName":"王"}}
{"index": {"_index":"heima", "_id": "4"}}
{"info": "黑马程序员前端讲师", "email": "zhangsan@itcast.cn", "name":{"firstName": "三", "lastName":"张"}}
批量删除:
POST /_bulk
{"delete":{"_index":"heima", "_id": "3"}}
{"delete":{"_index":"heima", "_id": "4"}}
  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }
  • 查询文档:GET /{索引库名}/_doc/文档id
  • 删除文档:DELETE /{索引库名}/_doc/文档id
  • 修改文档:
    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
    • 局部修改:POST /{索引库名}/_update/文档id { “doc”: {字段}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/29897.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

修改文件的权限(linux篇)

1.在yl用户下创建一个demo.txt文件 [rootlocalhost ~]# su yl [yllocalhost root]$ cd [yllocalhost ~]$ cd Desktop/ [yllocalhost Desktop]$ ls [yllocalhost Desktop]$ vim demo.txt 填入一些信息进行保存 2.查看文件信息以及所对应的组 [yllocalhost Desktop]$ ll 总用量…

MYSQL 四、mysql进阶 1(mysql逻辑架构以及查询流程)

一、mysql的逻辑架构 1. 逻辑架构剖析 1.1 服务器处理客户端请求 mysql是典型的c/s架构&#xff0c;即 client/server 架构&#xff0c;不论是客户端进程和服务器进程是采用哪种方式进行通信&#xff0c;最后实现的效果都是&#xff1a;客户端进程向服务器进程发送一段文本&am…

MySQL 创建数据表

创建MySQL数据表需要以下信息&#xff1a; 表名表字段名定义每个表字段 语法 以下为创建MySQL数据表的SQL通用语法&#xff1a; CREATE TABLE table_name (column_name column_type); 以下例子中我们将在 W3CSCHOOL 数据库中创建数据表w3cschool_tbl&#xff1a; CREAT…

大数据集群离线解析经纬度逆编码地址

背景 最近有个需要需求把经纬度解析为地址&#xff0c;那么通常解析地址市面上流行的方案就是调取百度、高德地图的接口进行解析。 难点 但是在用这个方案遇到一个问题就是企业认证的百度地图每天的逆编码解析为300w次&#xff0c;qps为100次/秒&#xff0c;对于日增上千万的…

Golang | Leetcode Golang题解之第166题分数到小数

题目&#xff1a; 题解&#xff1a; func fractionToDecimal(numerator, denominator int) string {if numerator%denominator 0 {return strconv.Itoa(numerator / denominator)}s : []byte{}if numerator < 0 ! (denominator < 0) {s append(s, -)}// 整数部分numer…

springboot 3.x 之 集成rabbitmq实现动态发送消息给不同的队列

背景 实际项目中遇到针对不同类型的消息&#xff0c;发送消息到不同的队列&#xff0c;而且队列可能还不存在&#xff0c;需要动态创建&#xff0c;于是写了如下代码&#xff0c;实践发现没啥问题&#xff0c;这里分享下。 环境 springboot 3.2 JDK 17 rabbitMQ模型介绍 图片…

TwinCAT3 Scope Y-T NC Project的使用方法(电机参数监控时序图)

TwinCAT3 Scope Y-T NC Project的使用方法 图中有两个电机 在程序中添加两个电机轴 右键点击解决方案&#xff0c;然后添加Scope YT Project 记录绝对位置&#xff0c;速度&#xff0c;相对位置&#xff0c;加速度&#xff0c;跟随误差 如果不是本地的虚拟轴&#xff0c;则可以…

OpenCV中的圆形标靶检测——findCirclesGrid()(二)

本章我们开始讲解基于层次聚类的标靶检测算法。当我们调用如下API,且flags中包含cv::CALIB_CB_CLUSTERING标志位时,将会执行基于层次聚类的斑点检测算法。算法支持对称标靶和非对称标靶两类,相应的需要将下述flags设为包含CALIB_CB_SYMMETRIC_GRID或CALIB_CB_ASYMMETRIC_GRI…

JVM性能优化工具及问题排查

jvm性能优化工具 jdk提供给我们了很实用的工具来分析JVM的状态&#xff0c;线程以及配置&#xff0c;这些工具包含于jdk中&#xff0c;并且以java实现&#xff0c;是JVM性能优化必不可少的工具集&#xff0c;这些工具都在$JAVA_HOME/bin下 jps、jinfo、jstack、jmap、jstat基本…

打开nginx连接的php页面报错502

目录 问题描述&#xff1a; 原因&#xff1a; 1. 使用 Unix 域套接字&#xff08;Unix Socket&#xff09; 区别和优势&#xff1a; 2. 使用 TCP/IP 套接字 区别和优势&#xff1a; 如何选择 扩展&#xff1a;Rocky_Linux9.4安装PHP的步骤&#xff1a; 使用Remi存储库…

NLP入门——基于梯度下降法分类的应用

问题分析 我们前面研究的都是基于统计的方法&#xff0c;通过不同的统计方法得到不同的准确率&#xff0c;通过改善统计的方式来提高准确率。现在我们要研究基于数学的方式来预测准确率。 假设我们有一个分词 s_{class,word}&#xff0c;class是该对象的类别&#xff0c;word…

【漏洞复现】金和OA C6 download.jsp 任意文件读取漏洞

免责声明&#xff1a; 本文内容旨在提供有关特定漏洞或安全漏洞的信息&#xff0c;以帮助用户更好地了解可能存在的风险。公布此类信息的目的在于促进网络安全意识和技术进步&#xff0c;并非出于任何恶意目的。阅读者应该明白&#xff0c;在利用本文提到的漏洞信息或进行相关测…

AI数据分析:Excel表格智能判断数据起点来计算增长率

工作任务&#xff1a;计算Excel表格中2023年1月到2024年4月的总增长率和复合增长率。 如果数据都有的情况下&#xff0c;公式很简单&#xff1a; 总增长率 (O2-B2)/B2 复合增长率 POWER((O2/B2),1/13)-1 但是&#xff0c;2023年1月、2月、3月的数据&#xff0c;有些有&…

AI办公自动化:用通义千问批量翻译长篇英语TXT文档

在deepseek中输入提示词&#xff1a; 你是一个Python编程专家&#xff0c;现在要完成一个编写基于qwen-turbo模型API和dashscope库的程序脚本&#xff0c;具体步骤如下&#xff1a; 打开文件夹&#xff1a;F:\AI自媒体内容\待翻译&#xff1b; 获取里面所有TXT文档&#xff…

mac如何检测硬盘损坏 常用mac硬盘检测坏道工具推荐

mac有时候也出现一些问题&#xff0c;比如硬盘损坏。硬盘损坏会导致数据丢失、系统崩溃、性能下降等严重的后果&#xff0c;所以及时检测和修复硬盘损坏是非常必要的。那么&#xff0c;mac如何检测硬盘损坏呢&#xff1f;有哪些常用的mac硬盘检测坏道工具呢&#xff1f; 一、m…

Python 数据可视化 散点图

Python 数据可视化 散点图 import matplotlib.pyplot as plt import numpy as npdef plot_scatter(ref_info_dict, test_info_dict):# 绘制散点图&#xff0c;ref横&#xff0c;test纵plt.figure(figsize(80, 48))n 0# scatter_header_list [peak_insert_size, median_insert…

nginx反向代理动静分离和负载均衡

一.nginx 反向代理简要介绍 1.什么是反向代理 反向代理是一种服务器&#xff0c;在这种设置中&#xff0c;代理服务器接收客户端的请求&#xff0c;并将这些请求转发给一个或多个后端服务器&#xff08;例如应用服务器、数据库服务器等&#xff09;。然后&#xff0c;后端服务…

【LinkedList与链表】

目录 1&#xff0c;ArrayList的缺陷 2&#xff0c;链表 2.1 链表的概念及结构 2.2 链表的实现 2.2.1 无头单向非循环链表实现 3&#xff0c;LinkedList的模拟实现 3.1 无头双向链表实现 4&#xff0c;LinkedList的使用 4.1 什么是LinkedList 4.2 LinkedList的使用 5…

上位机图像处理和嵌入式模块部署(h750 mcu和ad/da电路)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 大部分同学学习mcu的时候&#xff0c;都会把重点放在232、485、can、usb、eth这些常规的通信接口上面。还有一部分同学&#xff0c;可能会对lcd、c…

Codeforces Round 953 (Div. 2 ABCDEF题) 视频讲解

A. Alice and Books Problem Statement Alice has n n n books. The 1 1 1-st book contains a 1 a_1 a1​ pages, the 2 2 2-nd book contains a 2 a_2 a2​ pages, … \ldots …, the n n n-th book contains a n a_n an​ pages. Alice does the following: She …