电路分析期末总结笔记上

电流,电压定义及单位

电流(Current) 的定义是单位时间内通过导体横截面的电荷量。

电压(Voltage),又称作电势差或电位差,是衡量单位电荷在静电场中由于电势不同而产生的能量差的物理量。 

参考方向,关联参考概念

U,I采用相同的参考方向,为正

U,I采用不相同的参考方向,为负

功率的计算及判断

若是关联参考方向, p>0,吸收

若是非关联参考方向,p>0,放出

P=UI

电容和电感元件特点及电压与电流的关系

 

受控源判断 

电流控制电流源称为CCCS,即Current Controlled Current Source 

电流控制电压源称为CCVS,即Current Controlled Voltage Source

电压控制电压源称为VCVS,即Voltage Controlled Voltage Source

电压控制电流源称为VCVS,即Voltage Controlled Current Source

电源等效变换

掌握KCL与KVL

KCL:流入电流等于流出电流

KVL:升压等于降压

KVL和KCL方程数

 

戴维南等效电路的求解,利用戴维南定理求解电路

1.求Uoc,列KVL方程

2.求等效电阻,压线流断

3.求电流i


一阶电路时间常数的求解

电感:τ = L/R

电容:τ = CR

其中R是在稳定状态下,也就是时间为无穷下的等效电阻

这个时候的电路特点:电感是短路的,电容是开路的

而且要将电流源电压源置零,也就是流断,压线

换路定则

对于电容:根据闭合前的电压求闭合后的电压,并求导得出电流

对于电感:根据闭合前的电流求闭合后的电流,并求导得出电压

闭合前的怎么求?

初始值和终了值求解

初始值(t=0+)

  1. 电容电压初始值(VC(0+)):在换路瞬间,电容上的电压不会突变,即 VC(0+) = VC(0-),其中VC(0-)是换路前电容上的电压。

  2. 电感电流初始值(IL(0+)):同样地,电感中的电流在换路瞬间也不会突变,即 IL(0+) = IL(0-),其中IL(0-)是换路前电感中的电流。

终了值(稳态值,t → ∞)

稳态时,假设电路中不包含耗能元件(如电阻)或耗能元件的影响可以忽略,那么:

  1. 电容在直流电路中的作用相当于开路,因此在稳态下,电容两端的电压将等于其所在支路的电压源电压或由其他电压分压得到的电压。

  2. 电感在直流电路中的作用相当于短路,故稳态时流经电感的电流将由外部电压源和电路的电阻决定,电感不起阻碍电流的作用。

正弦电的三要素

  1. 幅值(Amplitude):也称为峰值或最大值,用大写字母后面加下标m表示,如ImUmEm,它代表正弦波的最大绝对值,即正弦波峰或谷的值。幅值决定了正弦波的高度,是衡量交流电强度的一个重要指标。

  2. 频率(Frequency):表示正弦交流电每秒钟完成完整周期性变化的次数,单位是赫兹(Hz)。频率决定了正弦波的周期性重复速度,计算公式中常用f表示,与周期T的关系为f = 1/T。角频率(Angular Frequency)是频率的另一种表达形式,用希腊字母ω表示,单位是弧度每秒(rad/s),与频率的关系为ω = 2πf

  3. 初相位(Initial Phase or Phase Angle):表示正弦波在计时起点(通常是t=0)的相位位置,决定了波形在时间轴上的起始位置,用φ表示。初相位可以是正值、负值或零,它影响波形相对于参考点的位置,从而影响信号的时序关系。在正弦函数的标准表达式i(t) = Im*sin(ωt + φ)中,φ就是这个初相位。

正弦电路电感,电阻和电容的电流和电压相量关系

  1. 电阻(R): 对于纯电阻元件,电压和电流是同相的,即它们的相位差为0度。电压和电流的相量表达式分别为 U = R * I。这意味着电阻两端的电压与通过它的电流成正比,且它们同时达到最大值和最小值。

  2. 电感(L): 在电感元件中,由于电磁感应的作用,电流的变化会产生一个阻止电流变化的电压。在正弦电路中,电感上的电压超前电流90度(π/2 弧度)。电压相量表达式为 U = jωL * I,其中 ω 是角频率,L 是电感量,j 是虚数单位。这意味着在任何给定时刻,电感电压达到最大值时,电流为零(过零点),反之亦然。

  3. 电容(C): 电容存储电场能量,其特点是能够通过变化的电压积累或释放电荷。在正弦电路里,电容上的电流超前电压90度(π/2 弧度)。电流相量表达式为 I = C * (jωU)I = U / (jωC),表明当电压达到零时电流达到最大值,而当电压达到最大值时电流为零。

总结来说,在正弦交流电路中,

电阻元件的电压和电流同相,

电感元件的电压超前电流90度,

电容元件的电流超前电压90度。


对称三相电路的线电流和相电流

线电压和相电压关系

对称三相电路分析


含有受控源的输入电阻的求解(大题)

含有受控源的电阻电路分析(大题)

 叠加定理(大题)

节点电压法(大题)

网孔电流法(大题)

最大功率定理(大题)

用三要素法求解一阶电路的响应(大题)

利用相量法分析正弦稳态电路,会计算有功功率,无功功率和视在功率(大题)

和你一起学电路:粉丝福利!1题学会正弦稳态电路相量分析的基本计算_哔哩哔哩_bilibili

平均功率的求解(大题)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/29678.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何将Postman API测试转换为JMeter以进行扩展

2024软件测试面试刷题,这个小程序(永久刷题),靠它快速找到工作了!(刷题APP的天花板)-CSDN博客跳槽涨薪的朋友们有福了,今天给大家推荐一个软件测试面试的刷题小程序。​编辑https://…

Apache Royale

Apache Royale 顶级项目 Apache Royale 之前adobe的flex,由于浏览器flash,安全沙箱问题,逐步退出市场,当年flex也就是AS3,浏览器统一兼容问题又停止了。 接着要说明一点,HTML5的自适应是在flex之后&#x…

shell编程中的运算符的讲解

在Linux操作系统中也可以使用expr来进行一些数值的运算,expr接受表达式作为参数,并打印计算结果。 对于某些复杂的表达式或早期不支持内嵌算术表达式的Shell环境,expr 仍然是一个可行的选择。 如上图所示,是使用变量sum来承接加和…

技术点梳理0618

ann建库,分布式建库,性能优化,precision recall参数优化 hnsw,图索引 1. build a)确定层:类似跳表思路建立多层,对每一个插入的节点,random层号l,从图的起始点search_…

文献学习——PWM - PFM模式无缝转换的PFC变换器统一控制

PWM - PFM模式无缝转换的PFC变换器统一控制 摘要:断续导通模式通常应用在升压功率因数校正转换器中。这篇文章提出了一种基于虚拟阻抗原理的实现脉冲宽度调制控制和脉冲频率调制控制的统一控制方法。控制模式可以简单的通过只调整一个控制参数来改变。因此&#xf…

第十一章:接口

接口 文章目录 接口一、简介1.1 接口是什么1.2 接口的作用1.3 接口的开发与调用1.4 接口的组成 二、RESTful API三、json-server四、接口测试工具五、接口的创建 一、简介 1.1 接口是什么 接口是前后端通信的桥梁 简单理解:一个接口就是 服务中的一个路由规则&am…

聊聊系统架构之负载均衡优化实践

一、写在前面 最近在进行线上监控检查时,我遇到了两个超出预期的案例。首先,网关层的监控数据与应用实际监控数据存在不一致性,尤其是max有较大的差异,详见如下图。其次在某个应用中,通过httpclient请求某域名时发现只…

碳课堂 | 手把手教你申报CBAM

CBAM全称为 Carbon Border Adjustment Mechanism,也被称作“碳关税”或“碳边境调节机制”,是指在实施国内严格气候政策的基础上,要求进口或出口的高碳产品缴纳或退还相应的税费或碳配额。目前,由于欧盟碳边境调节机制是全球第一个…

Leaflet地图实例

ReactTypeScript实例&#xff1a; import React, { useEffect, useRef } from "react"; import * as L from "leaflet"; import "leaflet/dist/leaflet.css";const App: React.FC () > {const mapRef useRef<HTMLDivElement>(null);…

【调试笔记-20240611-Linux-配置 OpenWrt-23.05 支持泛域名 acme 更新】

调试笔记-系列文章目录 调试笔记-20240611-Linux-配置 OpenWrt-23.05 支持泛域名 acme 更新 文章目录 调试笔记-系列文章目录调试笔记-20240611-Linux-配置 OpenWrt-23.05 支持泛域名 acme 更新 前言一、调试环境操作系统&#xff1a;Windows 10 专业版调试环境调试目标 二、调…

Android ViewModel实现和原理

ViewModel实现和原理 前言1. 使用1.1 gradle准备1.2 模拟场景1.3. LiveData和ViewModel1.4 更新数据 2. 原理与源码解读2.1 添加观察者2.2 setValue2.3 post 参考资料 前言 ViewModel的主要基于观察者的设计模式&#xff0c;他主要分为两个部分&#xff1a; 提供者Provider&a…

【React】极客园--01.项目前置准备

项目搭建 基于CRA创建项目 CRA是一个底层基于webpack快速创建React项目的脚手架工具 # 使用npx创建项目 npx create-react-app react-jike# 进入到项 cd react-jike# 启动项目 npm start调整项目目录结构 -src-apis 项目接口函数-assets 项目资源文件&…

CSS【实战】抽屉动画

效果预览 技术要点 实现思路 元素固定布局&#xff08;fixed&#xff09;在窗口最右侧外部js 定时器改变元素的 right 属性&#xff0c;控制元素移入&#xff0c;移出 过渡动画 transition transition: 过渡的属性 过渡的持续时间 过渡时间函数 延迟时间此处改变的是 right …

shell脚本之函数

一、1.函数&#xff1a;将命令序列按照固定的表达格式写在一起 2.函数作用&#xff1a;可以重复使用的命令序列&#xff0c;大的工程分割成若干个小块&#xff0c;依次执行&#xff0c;提高代码的可读性。 3.函数的两种格式 4.return作用&#xff1a;只能写在函数内部&#xff…

26 红黑树

目录 1.概念 2.性质 3.节点定义 4.结构 5.插入 6.验证 7.删除 8.红黑树和avl树比较 9.应用 概念 是一种二叉搜索树&#xff0c;但在每个节点上增加一个存储位表示节点的颜色&#xff0c;可以是red或black。通过对任何一条从根到叶子的路径上各个节点着色方式的限制&#xff…

reverse-android-实战喜马拉雅-ollvm

资料 1. apk: com.ximalaya.ting.android.apk. 2020年8月 可以使用 2. 抓包分析 java层分析 so层分析 登录的算法so是在 liblogin_encrypt.so中。 32位的&#xff0c; 用 IDA打开&#xff0c;查看 静态的导出函数。 打开 一个 首先看到 IDA VIEW 是一个横向 比较多的分支&am…

2-9 基于matlab的传递矩阵计算轴的模态

基于matlab的传递矩阵计算轴的模态&#xff0c;包括模态频率和模态振型&#xff0c;可设置轴的结构参数。程序已调通&#xff0c;可直接运行。 2-9 传递矩阵计算轴的模态 模态频率 - 小红书 (xiaohongshu.com)

python-jupyter notebook安装教程

&#x1f308;所属专栏&#xff1a;【python】✨作者主页&#xff1a; Mr.Zwq✔️个人简介&#xff1a;一个正在努力学技术的Python领域创作者&#xff0c;擅长爬虫&#xff0c;逆向&#xff0c;全栈方向&#xff0c;专注基础和实战分享&#xff0c;欢迎咨询&#xff01; 您的…

Jmeter 逻辑控制之IF条件控制器

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 测试环境 JMeter-5.4.1 循环控制器介绍 添加While Controller 右键线程组->添加->逻辑…

简易计算器需求报告

1. &#xff08;简易计算器&#xff09; 需求说明书 文件编号&#xff1a;2022[1] [木柚2] 06[3] [木柚4] 01[5] [木柚6] 完成日期&#xff1a;2024年 06月18日 编制&#xff1a; 易正阳 日期&#xff1a;2024年6月18日 审核&#xff1a;张正 日期&#xff1a;2024年6月18…