【机器学习】机器学习与教育科技在个性化教学中的融合应用与性能优化新探索

文章目录

    • 引言
    • 机器学习与教育科技的基本概念
      • 机器学习概述
        • 监督学习
        • 无监督学习
        • 强化学习
      • 教育科技概述
        • 学生学习行为分析
        • 个性化学习路径推荐
        • 智能化教育评估
    • 机器学习与教育科技的融合应用
      • 实时学习数据分析
        • 数据预处理
        • 特征工程
      • 学生成绩预测与优化
        • 模型训练
        • 模型评估
      • 个性化学习路径推荐与优化
        • 深度学习应用
      • 智能化教育评估与优化
        • 强化学习应用
    • 性能优化
      • 模型压缩与优化
      • 分布式训练
      • 高效推理
    • 案例研究
      • Khan Academy
        • 推荐算法
        • 个性化推荐
      • Coursera
        • 学习路径推荐算法
        • 智能教学优化
    • 未来展望
      • 跨领域应用
      • 智能化系统
      • 人工智能伦理
      • 技术创新
    • 结论

引言

随着教育科技的不断发展,个性化教学在教育领域的应用日益广泛。通过融合机器学习与教育科技,个性化教学系统能够实现学生学习行为分析、个性化学习路径推荐、智能化教育评估等功能,从而提升教学质量和学生的学习效果。本文将探讨机器学习与教育科技在个性化教学中的融合应用,并重点讨论性能优化的新方法和新探索。
在这里插入图片描述

机器学习与教育科技的基本概念

机器学习概述

机器学习是一种通过数据训练模型,并利用模型对新数据进行预测和决策的技术。其基本思想是让计算机通过样本数据学习规律,而不是通过明确的编程指令。根据学习的类型,机器学习可以分为监督学习、无监督学习和强化学习。

监督学习

监督学习是通过带标签的数据集训练模型,使其能够对新数据进行分类或回归预测。常见的算法包括线性回归、逻辑回归、支持向量机、决策树和神经网络等。

无监督学习

无监督学习是在没有标签的数据集上进行训练,主要用于数据聚类和降维。常见的算法包括K-means聚类、层次聚类和主成分分析(PCA)等。

强化学习

强化学习是一种通过与环境交互学习最优行为策略的技术。智能体通过试错法在环境中学习,以最大化累积奖励。常见的算法包括Q-learning、深度Q网络(DQN)和策略梯度方法等。

教育科技概述

教育科技(EdTech)是指将技术应用于教育服务和管理的创新。个性化教学系统是教育科技的重要应用之一,通过集成先进的技术和数据分析方法,个性化教学系统能够实现高效、准确的教学服务。

学生学习行为分析

学生学习行为分析是个性化教学系统的重要功能之一。通过分析学生的学习行为数据和相关因素,机器学习模型能够预测学生的学习成绩和学习状态,为教学决策提供依据。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor# 示例学生学习行为数据
data = {'study_hours': [2, 3, 1, 4],'attendance': [90, 80, 70, 95],'assignments_completed': [8, 7, 5, 9],'exam_score': [85, 78, 72, 88]
}df = pd.DataFrame(data)# 数据集拆分
X = df[['study_hours', 'attendance', 'assignments_completed']]
y = df['exam_score']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 模型训练
model = RandomForestRegressor()
model.fit(X_train, y_train)# 模型预测
predictions = model.predict(X_test)
print(predictions)
个性化学习路径推荐

个性化学习路径推荐是个性化教学系统的重要组成部分。通过分析学生的学习行为和学习需求,机器学习模型能够推荐最适合学生的学习路径,提高学习效果。

import numpy as np
from sklearn.cluster import KMeans# 示例学习路径数据
data = np.array([[1, 2], [2, 3], [3, 1], [4, 4],[5, 3], [6, 4], [7, 2], [8, 1]
])# K-means聚类
kmeans = KMeans(n_clusters=3, random_state=0).fit(data)
print(kmeans.labels_)

在这里插入图片描述

智能化教育评估

智能化教育评估是个性化教学系统的重要功能之一。通过实时监测和分析学生的学习数据,机器学习模型能够评估学生的学习效果和教学质量,为教学改进提供依据。

import numpy as np
from scipy.optimize import minimize# 示例教育评估数据
scores = np.array([85, 78, 92, 88])
weights = np.array([0.3, 0.2, 0.3, 0.2])# 定义目标函数
def evaluation_metric(weights, scores):return -np.dot(weights, scores)# 约束条件
constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
bounds = tuple((0, 1) for _ in range(len(scores)))# 最优权重配置
result = minimize(evaluation_metric, len(scores) * [1. / len(scores)], args=(scores,), method='SLSQP', bounds=bounds, constraints=constraints)
optimal_weights = result.x
print(optimal_weights)

机器学习与教育科技的融合应用

实时学习数据分析

实时学习数据分析是个性化教学系统的基础。通过对实时学习数据的采集、处理和分析,可以提供准确的学习信息,为教学决策提供支持。

数据预处理

在实时学习数据分析中,数据预处理是关键的一步。通过对原始数据进行清洗、转换和特征工程,可以提高模型的准确性和稳定性。

import pandas as pd
from sklearn.preprocessing import StandardScaler# 示例学习数据
data = {'timestamp': ['2023-01-01 08:00', '2023-01-01 08:05', '2023-01-01 08:10', '2023-01-01 08:15'],'study_duration': [2, 3, 1, 4],'assignments_completed': [8, 7, 5, 9]
}df = pd.DataFrame(data)# 数据预处理
df['timestamp'] = pd.to_datetime(df['timestamp'])
df['hour'] = df['timestamp'].dt.hour
df['minute'] = df['timestamp'].dt.minutefeatures = df[['hour', 'minute', 'study_duration', 'assignments_completed']]
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)print(scaled_features)
特征工程

特征工程是从原始数据中提取有用特征的过程。在学习数据分析中,常见的特征包括时间特征、学习特征和行为特征等。

# 示例特征工程
df['completion_rate'] = df['assignments_completed'] / df['study_duration']
print(df[['hour', 'minute', 'completion_rate']])

学生成绩预测与优化

在个性化教学系统中,学生成绩预测与优化是核心环节。通过训练和评估模型,可以实现学生成绩的准确预测和优化管理。

模型训练

在学生成绩预测中,常用的模型训练方法包括时间序列分析、回归模型和深度学习等。

from statsmodels.tsa.arima_model import ARIMA# 示例时间序列数据
scores = df['assignments_completed'].values# 时间序列模型训练
model = ARIMA(scores, order=(1, 1, 1))
model_fit = model.fit(disp=False)# 模型预测
predictions = model_fit.predict(len(scores), len(scores)+3, typ='levels')
print(predictions)
模型评估

模型评估是验证模型性能的重要步骤。常见的评估指标包括均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)等。

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score# 模型评估
rmse = mean_squared_error(y_test, predictions, squared=False)
mae = mean_absolute_error(y_test, predictions)
r2 = r2_score(y_test, predictions)print(f'RMSE: {rmse}, MAE: {mae}, R²: {r2}')

个性化学习路径推荐与优化

个性化学习路径推荐是通过机器学习模型,分析学生的学习行为和学习需求,推荐最适合学生的学习路径,提高学习效果。

深度学习应用

深度学习在个性化学习路径推荐中具有广泛的应用。通过卷积神经网络(CNN),可以实现学习数据的高精度分析和路径推荐。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms# 示例数据预处理
transform = transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))
])trainset = datasets.FakeData(transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True)# 定义卷积神经网络
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(3, 6, 3)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6,16, 3)self.fc1 = nn.Linear(16 * 6 * 6, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 2)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 16 * 6 * 6)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x# 模型训练
net = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)for epoch in range(2):running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = dataoptimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 2000 == 1999:print(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 2000}')running_loss = 0.0print('Finished Training')

在这里插入图片描述

智能化教育评估与优化

智能化教育评估是通过机器学习模型,实时监测和分析学生的学习数据,评估学生的学习效果和教学质量,为教学改进提供依据。

强化学习应用

强化学习是一种在智能化教育评估中广泛应用的技术。通过与环境交互,强化学习算法能够学习最优的教育评估策略。

import numpy as np
import gym
from stable_baselines3 import PPO# 创建教育评估环境
env = gym.make('EducationAssessment-v0')# 强化学习模型训练
model = PPO('MlpPolicy', env, verbose=1)
model.learn(total_timesteps=10000)# 模型评估
obs = env.reset()
for _ in range(1000):action, _states = model.predict(obs)obs, rewards, done, info = env.step(action)if done:obs = env.reset()env.close()

性能优化

模型压缩与优化

模型压缩是通过减少模型参数量和计算量,提高模型运行效率的技术。常见的方法包括权重剪枝、量化和知识蒸馏等。

# 示例权重剪枝
import torch
import torch.nn.utils.prune as prunemodel = CNN()
parameters_to_prune = [(module, 'weight') for module in model.modules() if isinstance(module, nn.Conv2d)]for module, param in parameters_to_prune:prune.l1_unstructured(module, name=param, amount=0.2)# Remove pruning reparameterization to enable inference
for module, param in parameters_to_prune:prune.remove(module, param)

分布式训练

分布式训练是通过多节点并行计算,加速大规模数据集和复杂模型训练的技术。常见的方法包括数据并行和模型并行。

# 示例数据并行
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDPdist.init_process_group(backend='nccl')
model = CNN().cuda()
ddp_model = DDP(model)
optimizer = optim.SGD(ddp_model.parameters(), lr=0.01)for epoch in range(10):for inputs, labels in trainloader:inputs, labels = inputs.cuda(), labels.cuda()optimizer.zero_grad()outputs = ddp_model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()

高效推理

高效推理是通过优化推理过程,提高模型响应速度的技术。常见的方法包括模型裁剪、缓存机制和专用硬件。

# 示例缓存机制
import torch
import torch.nn as nnclass CachedModel(nn.Module):def __init__(self, model):super(CachedModel, self).__init__()self.model = modelself.cache = {}def forward(self, x):x_tuple = tuple(x.view(-1).tolist())if x_tuple in self.cache:return self.cache[x_tuple]output = self.model(x)self.cache[x_tuple] = outputreturn outputmodel = CNN()
cached_model = CachedModel(model)input_tensor = torch.randn(1, 3, 32, 32)
output = cached_model(input_tensor)
print(output)

案例研究

Khan Academy

Khan Academy通过其个性化教学系统,利用机器学习技术实时分析和预测学生的学习行为,为学生提供高效、准确的学习路径和教学服务。

推荐算法

Khan Academy的个性化教学系统采用了一系列先进的推荐算法,包括时间序列分析、深度学习和强化学习。通过不断优化算法,Khan Academy的个性化教学系统能够提供高质量和智能化的教学管理解决方案。

from statsmodels.tsa.arima_model import ARIMA# 示例时间序列数据
study_durations = df['study_duration'].values# 时间序列模型训练
model = ARIMA(study_durations, order=(1, 1, 1))
model_fit = model.fit(disp=False)# 模型预测
predictions = model_fit.predict(len(study_durations), len(study_durations)+3, typ='levels')
print(predictions)

在这里插入图片描述

个性化推荐

Khan Academy的个性化教学系统通过分析学生的学习数据,向学生提供个性化的学习路径建议。例如,当系统检测到某一学生的学习效果不佳时,会根据历史数据和实时数据,推荐最佳的学习路径,提高学习效果。

# 示例个性化推荐
def personalized_learning_recommendation(student_id, learning_data, model):student_data = learning_data[learning_data['student_id'] == student_id]predictions = model.predict(student_data)return predictionsstudent_id = 1
recommendations = personalized_learning_recommendation(student_id, df, model_fit)
print(f'Recommendations for student {student_id}: {recommendations}')

Coursera

Coursera通过其个性化教学系统,利用机器学习和深度学习技术,实现高效、准确的教学管理和建议,提高学生的学习效果和满意度。

学习路径推荐算法

Coursera的个性化教学系统采用了一系列先进的学习路径推荐算法,包括卷积神经网络、强化学习和多传感器融合。通过不断优化算法,Coursera的个性化教学系统能够提供高质量和智能化的学习路径推荐解决方案。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms# 示例数据预处理
transform = transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))
])trainset = datasets.FakeData(transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True)# 定义卷积神经网络
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(3, 6, 3)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 3)self.fc1 = nn.Linear(16 * 6 * 6, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 2)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 16 * 6 * 6)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x# 模型训练
net = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)for epoch in range(2):running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = dataoptimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 2000 == 1999:print(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 2000}')running_loss = 0.0print('Finished Training')
智能教学优化

Coursera的个性化教学系统通过实时分析和优化学习数据,提高教学决策的准确性和效果。例如,当系统检测到潜在的学习瓶颈时,会自动调整教学策略,确保学生的学习效果。

# 示例智能教学优化
def learning_optimization(learning_data, model):predictions =model.predict(learning_data)optimized_learning = predictions * 0.9  # 假设的优化系数return optimized_learninglearning_data = np.array([2, 3, 1, 4])  # 示例学习数据
optimized_learning = learning_optimization(learning_data, model_fit)
print(f'Optimized learning: {optimized_learning}')

未来展望

跨领域应用

随着个性化教学技术的不断发展和优化,其应用领域将进一步拓展。未来,个性化教学将在培训、职业教育、终身学习等领域发挥更大的作用,为各行各业带来深远的影响和变革。

智能化系统

未来的智能化系统将更加依赖于个性化教学技术的支持。通过将个性化教学技术应用于智能学校、智能培训机构和智慧学习平台等领域,可以实现更加高效、智能和自动化的教学服务,提高教学质量和学习效果。

人工智能伦理

随着个性化教学技术的广泛应用,人工智能伦理问题将变得更加重要。如何确保个性化教学系统的公平性、透明性和可解释性,如何保护学生隐私,如何防止个性化教学技术被滥用,将是未来需要重点关注的问题。

技术创新

未来,机器学习和个性化教学领域将继续涌现出新的技术创新。新型神经网络架构、更加高效的训练算法、更智能的优化技术等,将推动个性化教学技术的性能进一步提升,开创更多的应用场景和可能性。

结论

机器学习与教育科技的融合应用在个性化教学中展现了巨大的潜力和前景。通过对机器学习和教育科技技术的深入理解和研究,结合实际应用中的需求,开发者可以构建出高性能、智能化的教学系统,实现学生学习行为分析、个性化学习路径推荐、智能化教育评估等功能。在实际应用中,通过模型压缩、分布式训练和高效推理等性能优化技术,可以进一步提升个性化教学系统的应用效率和性能。未来,随着技术的不断创新和发展,机器学习与个性化教学的融合应用将为教育科技领域带来更多的机遇和挑战。希望本文能够为开发者提供有价值的参考和指导,推动机器学习与个性化教学在教育科技中的持续发展和应用。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/28371.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【AI实践】Ollama本地安装大模型服务

Ollama安装运行 安装与配置 Download Ollama 安装默认在C盘,成功后,window任务栏图标会有Ollama Logo 为了不占用C盘更大的空间,修改模型下载路径,修改环境变量 下载模型 由于我电脑是第六代Intel,集显,…

【算法题】搜索二维矩阵,一文彻底弄会!

目录 一、题目描述 二、解题思路 1、引言 2、思路推导过程 三、参考答案 一、题目描述 搜索二维矩阵 给你一个满足下述两条属性的 m x n 整数矩阵: 每行中的整数从左到右按非严格递增顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数…

【C++】多态|原理|override|final|抽象类|多继承虚函数表|对象模型|虚表打印|(万字详解版)

目录 ​编辑 一.多态的概念 二.多态的构建 虚函数 重写 虚函数重写的例外 协变 隐藏 析构函数的重写 三.重载、重写(覆盖)、隐藏(重定义)的对比 四.C11新增的 override 和 final override final 五.抽象类 六.多态的原理 虚函数表 总结: 引用…

非常好用的7个Vue3组件库!!【送源码】

说到Vue,怎能不提Vue3呢? 它的大名鼎鼎主要归功于一项革命性的创新——Composition API。 这个新功能为逻辑复用带来了前所未有的友好性和灵活性,让开发者们在构建应用时如鱼得水。 如果你现在正在使用Vue3,或者在新的一年考虑…

浏览器上直接运行近 1000个 AI 模型!

今天推荐的开源项目叫做 tansformers.js,这是一个不需要服务器端,能让你在浏览器上使用到自然语言处理、计算机视觉等 AI 能力的开源项目。由 xenova 开源,transformers.js 已经在 GitHub 上获得了超过 9.2K 颗星星。 项目简介 transformers.…

JVM如何确定方法调用

方法调用并不等同于方法执行,方法调用阶段唯一的任务就是确定调用哪一个方法,不涉及方法内部的具体运行过程。在程序运行时,进行方法调用是最普遍、最频繁的操作,但Class文件的编译过程中不包含传统编译中的连接步骤,一…

医学人工智能项目如何申请基金?

小罗碎碎念 本期推文面向的群体 青年教师有志硕博/博后 尤其适合一直认真追小罗推文的老师/同学,你们会发现自己在看这篇推文的时候,遇到自己领域的项目时,文思如泉涌,仿佛马上就能把本子写好,哈哈。(运用…

命令词:引导行动的语言工具

人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…

App UI 风格打造独特体验

App UI 风格打造独特体验

通过Stream流对集合进行操作

Stream Api是JDK8提供的新特性,可以更为方便地对集合进行操作,比如我今天遇到的一个场景: 将本地的一个视频文件分成多块上传到Minio服务器,现在上传功能已经完成,需要调用minioClient对已经上传的文件重新合并成一个新…

8086汇编 add指令学习

ADD,是Intel x86平台的汇编加法指令,MEM代指操作数为内存或寄存器,REG代指操作数为寄存器,IMM代指立即数,SEG代指操作数为段寄存器。 形式和示例如下; ADD MEM8,REG8 ADD DS:[BXSI],AL ADD MEM16,R…

【ARM Coresight Debug 系列 -- ARMv8/v9 Watchpoint 软件实现地址监控详细介绍】

请阅读【嵌入式开发学习必备专栏 】 文章目录 ARMv8/v9 Watchpoint exceptionsWatchpoint 配置信息读取Execution conditionsWatchpoint data address comparisonsSize of the data accessWatchpoint 软件配置流程Watchpoint Type 使用介绍WT, Bit [20]: Watchpoint TypeLBN, B…

vue技巧(十)全局配置使用(打包后可修改配置文件)

1、背景 vue打包目前主流用的有webpack和vite两种,默认用的webpack。(二者的区别大家可以各自上网查,我没用过vite,所以不过多介绍)vue通过webpack打包后,源码会被压缩,但一些关键配置可…

【新课程】PICO VR 交互开发指南

从PICO开始,迈向XR跨平台开发 Unity XR Interaction Toolkit (简称XRI)是一套跨平台的 XR 交互开发工具包,随着版本的更新与完善,逐渐获得了开发者的青睐。各 XR 平台逐步推荐开发者采用 XRI 作为首选的交互开发工具为…

Pytest框架中fixture功能详解

文章目录 1 定义 Fixture函数 2 Fixture 的函数参数 2.1 传入其他fixture函数作为参数 2.2 传入request对象参数 示例1:访问fixture的调用者 示例2:使用fixture的参数 3 Fixture 的作用域参数scope 3.1 scopeclass场景 3.2 scopesession场景 4…

SwiftUI 6.0(iOS 18)新容器视图修改器漫谈

概览 本届 WWDC 2024 观影正如火如荼的进行中,一片鸟语花香、枝繁叶茂的苹果树上不时结出几颗令人垂涎欲滴的美味苹果让秃头码农们欲罢不能。 如您所愿,在界面布局“利器” SwiftUI 这根蔓藤也长出不少喜人的果实,其中在 iOS 18.0 中新添加的…

rabbitMQ的简单使用

rabbitMQ的介绍 RabbitMQ是一个开源的消息代理和队列服务器,主要用于在不同的应用程序之间传递消息。它基于AMQP(Advanced Message Queuing Protocol)协议,提供了一种可靠的方式来处理异步通信。RabbitMQ使用Erlang语言编写&…

springboot 整合redis问题,缓存击穿,穿透,雪崩,分布式锁

boot整合redis 压力测试出现失败 解决方案 排除lettuce 使用jedis <!-- 引入redis --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId><exclusions><exclus…

内存泄漏 内存溢出

概念 内存泄漏&#xff1a;是程序没有正确的释放已分配的内存&#xff0c;造成系统内存的浪费。内存泄漏很难发现&#xff0c;因为他不会直接导致程序崩溃&#xff0c;而是会慢慢降低程序的性能。 内存溢出&#xff1a;系统中存在无法回收的内存或使用的内存过多&#xff0c;…

【linux-imx6ull-定时器与中断】

目录 1. 前言2. Linux软件定时器2.1 内核频率选择2.2 重要的API函数2.3 Linux软件定时器的使用配置流程 4. Linux中断4.1 简单中断使用4.1.1 简要说明4.1.2 重要的API函数4.1.3 中断的简要配置流程 4.2. 中断的上半部和下半部4.2.1 tasklet实现下半部4.2.2 work实现下半部 1. 前…