GLM+vLLM 部署调用

GLM+vLLM 部署调用

vLLM 简介

vLLM 框架是一个高效的大型语言模型(LLM)推理和部署服务系统,具备以下特性:

  • 高效的内存管理:通过 PagedAttention 算法,vLLM 实现了对 KV 缓存的高效管理,减少了内存浪费,优化了模型的运行效率。
  • 高吞吐量:vLLM 支持异步处理和连续批处理请求,显著提高了模型推理的吞吐量,加速了文本生成和处理速度。
  • 易用性:vLLM 与 HuggingFace 模型无缝集成,支持多种流行的大型语言模型,简化了模型部署和推理的过程。兼容 OpenAI 的 API 服务器。
  • 分布式推理:框架支持在多 GPU 环境中进行分布式推理,通过模型并行策略和高效的数据通信,提升了处理大型模型的能力。
  • 开源:vLLM 是开源的,拥有活跃的社区支持,便于开发者贡献和改进,共同推动技术发展。

环境准备

在 一个3090 显卡的ubuntu22.04系统上进行部署。

pip 换源加速下载并安装依赖包

# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simplepip install modelscope==1.11.0
pip install openai==1.17.1
pip install torch==2.1.2+cu121
pip install tqdm==4.64.1
pip install transformers==4.39.3
# 下载flash-attn 请等待大约10分钟左右~
MAX_JOBS=8 pip install flash-attn --no-build-isolation
pip install vllm==0.4.0.post1

直接安装 vLLM 会安装 CUDA 12.1 版本。

pip install vllm

如果需要在 CUDA 11.8 的环境下安装 vLLM,可以指定 vLLM 版本和 python 版本下载。

export VLLM_VERSION=0.4.0
export PYTHON_VERSION=38
pip install https://github.com/vllm-project/vllm/releases/download/v${VLLM_VERSION}/vllm-${VLLM_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux1_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118

vLLM 对 torch 版本要求较高,且越高的版本对模型的支持更全,效果更好,所以新建一个全新的镜像。 https://www.codewithgpu.com/i/datawhalechina/self-llm/GLM-4

使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。

在 /root/model 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。并运行 python /root/model/model_download.py 执行下载,模型大小为 14GB。

import torch 
from modelscope import snapshot_download, AutoModel, AutoTokenizer
osmodel_dir = snapshot_download('ZhipuAI/glm-4-9b-chat', cache_dir='/root/model', revision='master')

代码准备

python 文件

在 /root/model 路径下新建 vllm_model.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出 issue。

首先从 vLLM 库中导入 LLM 和 SamplingParams 类。LLM 类是使用 vLLM 引擎运行离线推理的主要类。SamplingParams 类指定采样过程的参数,用于控制和调整生成文本的随机性和多样性。

vLLM 提供了非常方便的封装,我们直接传入模型名称或模型路径即可,不必手动初始化模型和分词器。

我们可以通过这个 demo 熟悉下 vLLM 引擎的使用方式。被注释的部分内容可以丰富模型的能力,但不是必要的,大家可以按需选择。

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
import os
import json# 自动下载模型时,指定使用modelscope。不设置的话,会从 huggingface 下载
# os.environ['VLLM_USE_MODELSCOPE']='True'def get_completion(prompts, model, tokenizer=None, max_tokens=512, temperature=0.8, top_p=0.95, max_model_len=2048):stop_token_ids = [151329, 151336, 151338]# 创建采样参数。temperature 控制生成文本的多样性,top_p 控制核心采样的概率sampling_params = SamplingParams(temperature=temperature, top_p=top_p, max_tokens=max_tokens, stop_token_ids=stop_token_ids)# 初始化 vLLM 推理引擎llm = LLM(model=model, tokenizer=tokenizer, max_model_len=max_model_len,trust_remote_code=True)outputs = llm.generate(prompts, sampling_params)return outputsif __name__ == "__main__":    # 初始化 vLLM 推理引擎model='/root/model/ZhipuAI/glm-4-9b-chat' # 指定模型路径# model="THUDM/glm-4-9b-chat" # 指定模型名称,自动下载模型tokenizer = None# tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False) # 加载分词器后传入vLLM 模型,但不是必要的。# 修改后的文本内容text = ["请描述一下大型语言模型的最新进展。","提供一些提高编程技能的建议。"]outputs = get_completion(text, model, tokenizer=tokenizer, max_tokens=512, temperature=1, top_p=1, max_model_len=2048)# 输出是一个包含 prompt、生成文本和其他信息的 RequestOutput 对象列表。# 打印输出。for output in outputs:prompt = output.promptgenerated_text = output.outputs[0].textprint(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

结果如下:

Prompt: '给我介绍一下大型语言模型。', Generated text: '大型语言模型是自然语言处理领域的一项突破性技术,它们通过分析和理解大量文本数据,学习如何生成和理解自然语言。这些模型通常具有数十亿甚至数万亿的参数,能够处理和理解复杂的语言结构,包括语法、语义和上下文关系。大型语言模型在多个领域有广泛的应用,包括文本生成、机器翻译、情感分析、问答系统和聊天机器人等。它们能够生成连贯的文本,提供准确的翻译,理解用户的查询,并生成相关的回答。这些模型的训练需要大量的计算资源和海量的数据。随着技术的进步,模型的规模和性能都在不断提高,使得它们在自然语言处理任务中的表现越来越接近人类水平。然而,它们也面临着一些挑战,包括偏见、泛化和解释性问题。未来,大型语言模型可能会在更多领域发挥作用,包括教育、医疗和创意产业等。它们有望成为人们日常生活和工作中不可或缺的一部分,提供更加智能和便捷的语言交互体验。'

部署兼容 OpenAI API 的 vLLM 服务器

GLM4 模型与 OpenAI API 协议兼容,因此我们可以利用 vLLM 快速搭建一个符合 OpenAI API 标准的服务器。此服务器默认在 http://localhost:8000 上启动,并且一次只能服务一个模型。它支持模型列表查询、文本补全(completions)和对话补全(chat completions)等接口。

  • 文本补全(completions):适用于基础的文本生成任务,模型会在给定提示后生成文本。常用于撰写文章、故事、邮件等。
  • 对话补全(chat completions):专用于对话场景,模型需理解和生成对话内容。适用于开发聊天机器人或对话系统。
    在部署服务器时,我们可以自定义多种参数,如模型名称、路径、聊天模板等。
  • --host--port 用于指定服务器的地址和端口。
  • --model 指定模型的路径。
  • --chat-template 用于指定对话的模板。
  • --served-model-name 设置服务中模型的名称。
  • --max-model-len 限制模型的最大处理长度。
    由于 GLM4-9b-Chat 模型的最大长度较长(128K),为了避免 vLLM 初始化缓存时消耗过多资源,这里我们将 --max-model-len 设置为 2048。
python -m vllm.entrypoints.openai.api_server \--model /root/autodl-tmp/ZhipuAI/glm-4-9b-chat \--served-model-name glm-4-9b-chat \--max-model-len=2048 \--trust-remote-code

测试服务器

  1. 查看模型列表
    使用 curl 命令向服务器发送请求,查看当前可用的模型列表。
    curl http://localhost:8000/v1/models
    
    返回如下结果:
    {"object":"list","data":[{"id":"glm-4-9b-chat","object":"model","created":1717567231,"owned_by":"vllm","root":"glm-4-9b-chat","parent":null,"permission":[{"id":"modelperm-4fdf01c1999f4df1a0fe8ef96fd07c2f","object":"model_permission","created":1717567231,"allow_create_engine":false,"allow_sampling":true,"allow_logprobs":true,"allow_search_indices":false,"allow_view":true,"allow_fine_tuning":false,"organization":"*","group":null,"is_blocking":false}]}]
    }
    
  2. 测试 OpenAI Completions API
    通过 curl 命令测试文本补全功能。
    curl http://localhost:8000/v1/completions \-H "Content-Type: application/json" \-d '{"model": "glm-4-9b-chat","prompt": "你好","max_tokens": 7,"temperature": 0}'
    
    收到的响应如下:
    {"id":"cmpl-8bba2df7cfa1400da705c58946389cc1","object":"text_completion","created":1717568865,"model":"glm-4-9b-chat","choices":[{"index":0,"text":",请问有什么可以帮助您的?您好","logprobs":null,"finish_reason":"length","stop_reason":null}],"usage":{"prompt_tokens":3,"total_tokens":10,"completion_tokens":7}
    }
    
    同样,您也可以使用 Python 脚本向 OpenAI Completions API 发送请求。如果标准 OpenAI API 功能无法满足您的需求,您可以根据 vLLM 官方文档中的说明,添加额外的参数 extra_body,例如传入 stop_token_ids 以控制生成过程。
    更多信息请参考 vLLM 官方文档:https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html。

也可以用 python 脚本请求 OpenAI Completions API 。这里面设置了额外参数 extra_body,我们传入了 stop_token_ids 停止词 id。当 openai api 无法满足时可以采用 vllm 官方文档方式添加。https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html

from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1",api_key="token-abc123", # 随便设,只是为了通过接口参数校验
)completion = client.chat.completions.create(model="glm-4-9b-chat",messages=[{"role": "user", "content": "你好"}],# 设置额外参数extra_body={"stop_token_ids": [151329, 151336, 151338]}
)print(completion.choices[0].message)

得到的返回值如下所示:

ChatCompletionMessage(content='\n你好👋!很高兴见到你,有什么可以帮助你的吗?', role='assistant', function_call=None, tool_calls=None)
  1. 用 curl 命令测试 OpenAI Chat Completions API 。
curl http://localhost:8000/v1/chat/completions \-H "Content-Type: application/json" \-d '{        "model": "glm-4-9b-chat","messages": [            {"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "你好"}],"max_tokens": 7,        "temperature": 0 }'

得到的返回值如下所示:

{"id":"cmpl-8b02ae787c7747ecaf1fb6f72144b798","object":"chat.completion","created":1717569334,"model":"glm-4-9b-chat","choices":[{"index":0,"message":{"role":"assistant","content":"\n你好👋!很高兴"},"logprobs":null,"finish_reason":"length","stop_reason":null}],"usage":{"prompt_tokens":16,"total_tokens":23,"completion_tokens":7}

也可以用 python 脚本请求 OpenAI Chat Completions API 。

from openai import OpenAIopenai_api_key = "EMPTY" # 随便设,只是为了通过接口参数校验openai_api_base = "http://localhost:8000/v1"client = OpenAI(api_key=openai_api_key,base_url=openai_api_base,
)chat_outputs = client.chat.completions.create(model="glm-4-9b-chat",messages=[{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "你好"},],# 设置额外参数extra_body={"stop_token_ids": [151329, 151336, 151338]}
)
print(chat_outputs)

在处理请求时 API 后端也会打印一些日志和统计信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/26936.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零开始写 Docker(十八)---容器网络实现(下):为容器插上”网线“

本文为从零开始写 Docker 系列第十八篇,利用 linux 下的 Veth、Bridge、iptables 等等相关技术,构建容器网络模型,为容器插上”网线“。 完整代码见:https://github.com/lixd/mydocker 欢迎 Star 推荐阅读以下文章对 docker 基本实…

SwiftUI中UIViewRepresentable的使用(UIKit与SwiftUI的桥梁)

UIViewRepresentable是一个协议,用于创建一个SwiftUI视图,该视图包装了一个UIKit视图。通过实现UIViewRepresentable协议,我们可以在SwiftUI中使用自定义的UIKit视图,并与SwiftUI进行交互。 实现UIViewRepresentable 创建一个遵…

Java的MyBatis框架中 if-else语句

在Java的MyBatis框架中&#xff0c;mapper文件用于定义SQL语句和映射规则。在mapper文件中&#xff0c;你可以使用<if>、<choose>、<when>和<otherwise>等元素来执行条件逻辑&#xff0c;类似于编程语言中的if-else语句。以下是一些常用的条件处理方法…

自动控制理论实验---IDFT和FFT算法的原理和MATLAB编程

1、实验设备 PC计算机1台&#xff0c;MATLAB软件1套。 2、实验目的 掌握IDFT&#xff08;逆离散傅里叶变换&#xff09;算法的原理和MATLAB编程方法。了解FFT&#xff08;快速傅里叶变换&#xff09;算法&#xff0c;并能够调用MATLAB的fft函数进行频域变换。验证IDFT程序的…

数据预处理之基于统计的(3σ,Z分数,Boxplot箱线图)异常值检测#matlab

基于统计的异常值检测 1.异常值的含义 异常值是指在数据集中偏离大部分数据的数据&#xff0c;使人怀疑这些数据的偏离并非由随机因素产生&#xff0c;而是产生于完全不同的机制。 异常挖掘(outlier mining)问题由两个子问题构成&#xff1a;(1)如何度量异常。(2)如何有效发…

金融与大模型:引领行业未来的创新融合

前言 在数字化浪潮席卷全球的今天&#xff0c;金融与大模型的结合正成为行业发展的新引擎。这种融合不仅为金融机构带来了前所未有的效率和准确性&#xff0c;也为金融市场的稳定与发展注入了新的活力。本文将基于当前的市场现状&#xff0c;结合金融环境的发展&#xff0c;深…

Java学习-MyBatis学习(四)

代码下载 解决字段名与属性名不一致 ①使用别名emp_name empName解决字段名和属性名不一致 <select id"getAllEmpOld" resultType"Emp"><!--①使用别名emp_name empName解决字段名和属性名不一致-->select eid,emp_name empName,age,sex,em…

图片查看器

目录 一 原型 二 源码 一 原型 二 源码 namespace 图片查看器 {public partial class Form1 : Form{public Form1(){InitializeComponent();}private void Form1_Load(object sender, EventArgs e){//默认显示第一张图片pictureBox1.Image imageList1.Images[0];}private v…

《未选择的路》

2024年&#xff0c;计算机相关专业还值得选择吗&#xff1f; 看到这个话题活动&#xff0c;回想起自己过去做的许多选择&#xff0c;思绪良久。 一首诗送给大家吧。 顾子欣 译 列位&#xff0c;共勉。

【PB案例学习笔记】-21小大写金额转换

写在前面 这是PB案例学习笔记系列文章的第21篇&#xff0c;该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习&#xff0c;提高编程技巧&#xff0c;以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码&#xff0c;小凡都上传到了gite…

ARM32开发--IIC时钟案例

知不足而奋进 望远山而前行 目录 文章目录 前言 目标 内容 需求 开发流程 移植驱动 修改I2C实现 测试功能 总结 前言 在现代嵌入式系统开发中&#xff0c;移植外设驱动并测试其功能是一项常见的任务。本次学习的目标是掌握移植方法和测试方法&#xff0c;以实现对开…

【python】flask中Session忽然取不到存储内容怎么办?

尚未确定,后续更新,先别以此为准。 【背景】 用flask写的Web应用,运行不正常,查看原因,发现视图函数a中设定的session内容在视图函数b忽然拿不到了。 【分析】 这个应用在两个服务器间互相Hook,因此可能涉及跨域的问题。 视图函数a设置的session,再次从前端调用视图…

Undertow学习

Undertow介绍 Undertow是一个用java编写的灵活、高性能的web服务器&#xff0c;提供基于NIO的阻塞和非阻塞API。 Undertow有一个基于组合的体系结构&#xff0c;允许您通过组合小型单用途处理程序来构建web服务器。为您提供了在完整的Java EE servlet 4.0容器或低级别非阻塞处…

C# 设置PDF表单不可编辑、或提取PDF表单数据

PDF表单是PDF中的可编辑区域&#xff0c;允许用户填写指定信息。当表单填写完成后&#xff0c;有时候我们可能需要将其设置为不可编辑&#xff0c;以保护表单内容的完整性和可靠性。或者需要从PDF表单中提取数据以便后续处理或分析。 之前文章详细介绍过如何使用免费Spire.PDF…

PHP在线生成查询产品防伪证书系统源码

源码介绍 PHP在线生成查询产品防伪证书系统源码&#xff0c;源码自带90套授权证书模板&#xff0c;带PSD公章模板&#xff0c;证书PSD源文件。 环境要求&#xff1a;PHPMYSQL&#xff0c;PHP 版本请使用PHP5.1 ~5.3。 图片截图 源码安装说明 1.上传所有文件至你的空间服务器…

免费的端口映射工具哪个好用

端口映射&#xff0c;即从一个网络环境下的端口映射到另一个网络环境下访问的过程。通常由软件方式来提供这一过程的实现&#xff0c;或一些客户端工具。当涉及内外网时&#xff0c;如内网端口地址映射到外网地址&#xff0c;即是内网穿透的原理。免费的端口映射工具有哪些&…

PHP和Mysql前后端交互效果实现

一、连接数据库基本函数 mysqli_connect(); 作用&#xff1a;创建数据库连接&#xff0c;打开一个新的mysql的连接。传参顺序&#xff1a;数据库地址、数据库账号、数据库密码 <?phpecho mysqli_connect("localhost",root,root) ?> /*结果&#xff1a;F…

5.6 Python 常用函数

文章目录 1. enumerate枚举函数2. map映射函数3. zip拉链函数4. max,min比较函数4.1 对象比较4.2 列表相关1. 获取列表中的最大值2. 获取列表中的最大数值3. 获取列表中指定索引的最大值4. 获取列表中的最大的绝对值 4.3 字典相关1. 获取字典中key的最大值2. 获取字典中最大val…

翻译《The Old New Thing》- The case of the exception that a catch (…) didn’t catch

The case of the exception that a catch (...) didnt catch - The Old New Thing (microsoft.com)https://devblogs.microsoft.com/oldnewthing/20240405-00/?p109621 Raymond Chen 2024年04月05日 一位客户认为他们修复了一个bug&#xff0c;但他们仍然因为这个bug而崩溃。…

python django初步搭建(一)

记录一次简单的python django使用&#xff0c;后续调用api相关的暂时不想写。。。 一、环境 windows python 3.11.7 django 二、初步搭建 2.1 新建空文件夹 为了方便本次记录&#xff0c;新建了一个空的文件夹来使用。 直接在这里输入cmd 然后按下回车 2.2 安装virtual…