使用TensorFlow实现双DQN与优先级经验回放
- 使用TensorFlow实现双DQN与优先级经验回放:强化学习的高级策略探索
- 双DQN算法简介
- 优先级经验回放
- 代码实现
- 结语
使用TensorFlow实现双DQN与优先级经验回放:强化学习的高级策略探索
在深度强化学习领域,双深度Q网络(Double Deep Q-Network, DDQN)与优先级经验回放(Perse Experience Replay)机制是提升学习效率与稳定性的两项关键技术。本文将深入解析双DQN的原理,介绍优先级经验回放的重要性,并通过TensorFlow的代码实例,展现如何结合两者实现高效的学习系统,为复杂决策问题提供解决方案。
双DQN算法简介
双DQN旨在解决标准DQN中的过估计问题,通过分离动作选择与动作评价过程,提高学习的准确性。具体而言,它引入了两个网络:一个用于决策(选择动作),另一个用于评估(计算Q值)。更新时,动作由决策网络选择,但其Q值由评价网络评估,减少了过估计倾向。
优先级经验回放
优先级经验回放通过赋予重要经验(导致高收益或意外结果的事件)更高的采样概率,提高学习效率。它基于每个经验的TD误差(或重要性)建立优先级,使得学习过程聚焦于更有价值的信息。
代码实现
假设使用TensorFlow 2.x版本,环境为OpenAI Gym的CartPole-v0。
import numpy as np
import tensorflow as tf
from collections import deque
import gym
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam# 环境与超参数设置
env = gym.make('CartPole-v0')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
buffer_size = 10000
batch_size = 32
gamma = 0.95
lr = 0.001
epsilon = 1.0
epsilon_decay = 0.995
epsilon_min = 0.01
alpha = 0.6 # 优先级经验回放的α参数
beta = 0.4 # 重要性采样β参数
prioritized_replay = True# 经验回放缓冲
class PrioritizedReplayBuffer:def __init__(self, buffer_size, alpha, beta):self.buffer = deque(maxlen=buffer_size)self.alpha = alphaself.beta = betaself.pos = 0self.priorities = np.zeros((buffer_size,), dtype=np.float32)def store(self, transition):max_prio = self.priorities.max() if self.buffer else 1.self.priorities[self.pos] = max_prioself.buffer.append(transition)self.pos = (self.pos + 1) % self.buffer_sizedef sample(self, batch_size):if len(self.buffer) < batch_size:return Nonepriorities = self.priorities[:len(self.buffer)]probs = priorities ** self.alphaprobs /= probs.sum()indices = np.random.choice(len(self.buffer), size=batch_size, replace=False, p=probs)samples = [self.buffer[idx] for idx in indices]weights = (len(self.buffer) * probs[indices]) ** (-self.beta)weights /= weights.max()return samples, indices, np.array(weights, dtype=np.float32)def update_priorities(self, indices, new_priorities):for idx, prio in zip(indices, new_priorities):self.priorities[idx] = prio# 网络结构
def build_model():model = Sequential()model.add(Dense(24, input_dim=state_dim, activation='relu'))model.add(Dense(24, activation='relu'))model.add(Dense(action_dim, activation='linear'))return model# 主网络与目标网络
main_model = build_model()
target_model = build_model()
target_model.set_weights(main_model.get_weights())# 训练习函数
def train(model, target_model, states, actions, rewards, next_states, dones, weights, indices=None):next_q_values = target_model.predict_on_batch(next_states)max_next_q = np.amax(next_q_values, axis=1)targets = rewards + gamma * (1 - dones) * max_next_qq_values = model.predict_on_batch(states)q_values[range(batch_size), actions] = targetsif prioritized_replay:errors = np.abs(targets - q_values[range(batch_size), actions])replay_buffer.update_priorities(indices, errors + 1e-6) # 避尾部加小量以避免优先级为0model.train_on_batch(states, q_values, sample_weight=weights)# 主循环
replay_buffer = PrioritizedReplay(buffer_size, alpha)
optimizer = Adam(lr)for episode in range(num_episodes):state = env.reset()done = Falseepisode_reward = 0while not done:if np.random.rand() < epsilon:action = env.action_space.sample()else:q_values = main_model.predict(np.expand_dims(state, axis=0))action = np.argmax(q_values)next_state, reward, done, _ = env.step(action)replay_buffer.store((state, action, reward, next_state, done))state = next_stateepisode_reward += reward# 学习更新if prioritized_replay:experience, indices, weights = replay_buffer.sample(batch_size)if experience is not None:states, actions, rewards, next_states, dones = zip(*experience)states, next_states = np.vstack(states), np.vstack(next_states)train(main_model, target_model, states, actions, rewards, next_states, dones, weights, indices)else:# 非优先级经验回放的简化处理pass# ε衰减if epsilon > epsilon_min:epsilon *= epsilon_decay# 定期更新目标网络if episode % target_update_freq == 0:target_model.set_weights(main_model.get_weights())print(f"Episode {episode}: Reward: {episode_reward}")env.close()
结语
通过上述代码,我们不仅理解了双DQN与优先级经验回放在理论上的优势,还实践了如何在TensorFlow框架下实现这一高级强化学习系统。结合两者,不仅提升了学习效率,还增强了模型的稳定性,这对于解决复杂、高维度的现实世界问题至关重要。随着技术的持续发展,双DQN与优先级经验回放等策略将继续在强化学习领域发挥核心作用,推动智能决策系统的前沿探索。