支持向量机(SVM): 从理论到实践的指南(1)

支持向量机(SVM)被誉为数据科学领域的重量级算法,是机器学习中不可或缺的工具之一。SVM以其优秀的泛化能力和对高维数据的管理而备受推崇。本文旨在梳理SVM的核心概念以及其在实际场景中的应用。

SVM的核心理念

SVM专注于为二分类问题找到最佳决策边界,即超平面,该平面能最大化两类数据之间的空隙或间隔。线性SVM假设用一个直线(或高维空间中的超平面)足以有效地分隔数据。当遇到重叠或杂乱无章散布的数据时,软间隔SVM允许某些点位于错误的边界一侧,这通过引入松弛变量与罚项系数C来实现,从而提供一个稳健的平衡方案。

算法实现

SVM通过转化优化问题为其对偶形式并使用拉格朗日乘子法来解决。这不仅简化了求解过程,还能自然地加入核技巧(Kernel trick)来处理非线性可分的数据集。
详细算法描述>>>>

一个经典案例

为了具体说明SVM的应用,我们考虑了一个著名的数据集。

  1. 鸢尾花分类:鸢尾花数据集由三个品种的鸢尾花构成,每一种都有50个样本和4个特征。对于二分类任务,我们专注于将Setosa从Versicolour中区分出来。

实践应用

利用MindOpt APL,一种强大的代数建模语言和求解器,我们可以更高效地构建和解决SVM优化问题。在训练阶段,算法学习数据的模式,并找到分隔不同类别的最优决策边界。一旦模型确定,我们便可用其做出预测并评估其在未见数据上的性能。

clear model;####################################################
#
#   Vectorization Modeling Example
#   Linear SVM
#
####################################################option modelname svm_02; #定义存储文件名# ----------建模--------Start----
# svm_02.mapl# 1.读取iris的用于构建SVM模型的训练数据
param data_dir = "./data/iris_data-train.csv";
param X = read_csv( data_dir, use_col="0,1,2,3",skip=1);
param y = read_csv( data_dir, use_col=4,skip=1);
param dataNum = X.row;
param dataDim = X.col;
print "总共有{}个数据,每个数据有{}维"%dataNum,dataDim;# 2.LinearSVM问题建模
param C_rho = 0.2;
print "Param C is :{}"%C_rho;print "Start modeling-------";var w(dataDim) >= -1 <= 1; # Bounded Model Parameter
var b; #
var eps(dataNum) >= 0;minimize 1/2 * w' * w + C_rho * sum(eps); #'是转置,目标函数subto constraint:eps >= 1 - (X*w +b).*y; #注意是向量化建模,因此相当于多条维度的约束# 3.调用求解器求解
print "Start solving-------";
option solver mindopt;
solve;# 4. 超平面的w取值
print "- Optimal w is:";
print w;
print "- Optimal b is:";
print b;
print "- eps is:";
forall { i in 0..dataNum-1 with eps[i] > 0.001}print "  - eps[{}] = {} "%i,eps[i];param obj_total_loss =  1/2 * w' * w + C_rho * sum(eps); #'是转置
print "- obj of total loss is : {}"%obj_total_loss;# 5.验证并分析结果print "";
print "验证结果:-----";param correctNum = sum{i in 0..dataNum-1} if((sum{j in 0..dataDim-1}w[j]*X[i, j]) +b )* y[i] > 0 then 1 else 0 end;
param precision = correctNum / dataNum;
print "- Precision for train data is : {:.2f}" % precision;#
print "";
print "导入测试数据验证效果:-----";param data_dir_test = "./data/iris_data-test.csv";
param X_test = read_csv( data_dir_test, use_col="0,1,2,3",skip=1);
param y_test = read_csv( data_dir_test, use_col=4,skip=1);
param dataNum_test = X_test.row;
param dataDim_test = X_test.col;
print "- 总共有{}个数据,每个数据有{}维"%dataNum_test,dataDim_test;print "|测试数据ID|实际标签|SVM预测标签是|";
print "|--|--|--|";
forall {i in 0..dataNum_test-1}
print "|{}|{}|{}|"%i,y_test[i], if((sum{j in 0..dataDim_test-1}w[j]*X_test[i, j]) +b ) > 0 then 1 else -1 end;

运行上述代码结果如下:

总共有80个数据,每个数据有4维
Param C is :0.2
Start modeling-------
Start solving-------
Running mindoptampl
wantsol=1
MindOpt Version 1.2.1 (Build date: 20240428)
Copyright (c) 2020-2024 Alibaba Cloud.Start license validation (current time : 29-APR-2024 17:51:11).
License validation terminated. Time : 0.007sModel summary.- Num. variables     : 85- Num. constraints   : 80- Num. nonzeros      : 480- Bound range        : [1.0e+00,1.0e+00]- Quad. bound range  : [1.0e+00,1.0e+00]- Objective range    : [2.0e-01,2.0e-01]- Quad. obj. range   : [1.0e+00,1.0e+00]- Matrix range       : [1.0e-01,7.0e+00]Presolver started.
Presolver terminated. Time : 0.000sInterior point method started.Iter         PrimObj         DualObj PrimFea DualFea  GapFea      Mu   Time0 +1.56581101e+01 -1.06624290e+01 2.0e-01 2.6e-01 2.5e+00 6.2e-01   0.02s1 +8.56566249e+00 -7.16779185e-01 5.4e-04 7.6e-03 9.3e+00 6.5e-02   0.04s2 +9.75513434e-01 +2.94267093e-01 2.7e-05 1.4e-03 6.8e-01 4.1e-03   0.05s3 +5.98630319e-01 +4.50898225e-01 4.2e-06 1.5e-04 1.5e-01 8.9e-04   0.05s4 +5.12227038e-01 +4.88329845e-01 1.1e-08 1.2e-03 2.5e-02 1.5e-04   0.05s5 +5.04653750e-01 +5.01437631e-01 9.7e-10 2.0e-04 3.2e-03 1.9e-05   0.06s6 +5.02835294e-01 +5.02808740e-01 2.7e-12 5.4e-07 2.7e-05 1.6e-07   0.06s7 +5.02821164e-01 +5.02821090e-01 7.1e-15 1.5e-09 7.3e-08 4.4e-10   0.06s8 +5.02821125e-01 +5.02821124e-01 1.9e-16 4.1e-12 2.0e-10 1.2e-12   0.06s
Terminated.- Method             : Interior point method.- Primal objective   : 5.0282112458779E-01- Dual objective     : 5.0282112438583E-01- Num. threads       : 4- Num. iterations    : 8- Solver details     : Solver terminated with a primal/dual optimal status.Interior point method terminated. Time : 0.046sOPTIMAL; objective 0.50
0 simplex iterationsCompleted.
- Optimal w is:
[[-0.16610],[ 0.35465],[-0.75422],[-0.32403]]
- Optimal b is:
2.038087831121987
- eps is:- eps[23] = 0.08284647160625058 - eps[24] = 0.05118542249112839 - eps[47] = 0.26241815907236044 - eps[69] = 0.04962685713002854 
- obj of total loss is : 0.5028211245877855验证结果:-----
- Precision for train data is : 1.00导入测试数据验证效果:-----
- 总共有20个数据,每个数据有4|测试数据ID|实际标签|SVM预测标签是|
|--|--|--|
|0|1|1|
|1|1|1|
|2|1|1|
|3|1|1|
|4|1|1|
|5|1|1|
|6|1|1|
|7|1|1|
|8|1|1|
|9|1|1|
|10|-1|-1|
|11|-1|-1|
|12|-1|-1|
|13|-1|-1|
|14|-1|-1|
|15|-1|-1|
|16|-1|-1|
|17|-1|-1|
|18|-1|-1|
|19|-1|-1|

结果

上面的程序运行结果如下:
其中,小数后几位是精度影响,每次会有变化,不影响结果。


总共有80个数据,每个数据有4维
Param C is :0.2
……

  • Optimal w is: [[-0.16610], [ 0.35465], [-0.75422], [-0.32403]]
  • Optimal b is: 2.038087831122001
  • eps is:
    • eps[23] = 0.08284647160625147
    • eps[24] = 0.051185422491125426
    • eps[47] = 0.26241815907236443
    • eps[69] = 0.049626857130028075
  • obj of total loss is : 0.5028211245877853

验证结果:-----

  • Precision for train data is : 1.00

导入测试数据验证效果:-----

  • 总共有20个数据,每个数据有4维
  • 测试数据ID实际标签SVM预测标签是
    011
    111
    211
    311
    411
    511
    611
    711
    811
    911
    10-1-1
    11-1-1
    12-1-1
    13-1-1
    14-1-1
    15-1-1
    16-1-1
    17-1-1
    18-1-1
    19-1-1

可以看到,对于这份数据,计算的超平面能很好地进行二分类,在测试集合上也有100%的正确率,证实了SVM在实际问题中的有效性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/25409.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mysql学习(七)——约束

文章目录 四、约束4.1 概述4.2 约束演示4.3 外键约束 总结 四、约束 4.1 概述 概念&#xff1a;约束是作用于表中字段上的规则&#xff0c;用于限制存储在表中的数据。目的&#xff1a;保证数据库中数据的正确、有效性和完整性。分类&#xff1a; 4.2 约束演示 根据需求&…

SOA的设计模式_1.服务注册表模式

1.注册表 访问注册表&#xff08;Service Registry&#xff09;主要在SOA设计时段使用&#xff0c;虽然它们常常也具有运行时段的功能。注册表支持驱动SOA治理的服务合同、策略和元数据的开发、发布和管理。因此&#xff0c;它们提供一个主控制点&#xff0c;或者称为策略执行…

著名AI人工智能社会学家唐兴通谈数字社会学网络社会学主要矛盾与数字空间社会网络社会的基本议题与全球海外最新热点与关注社会结构社会分工数字财富数字游民数字经济

如果人工智能解决了一切&#xff0c;人类会做什么&#xff1f; 这个问题的背后是人工智能时代的社会主要矛盾会是什么&#xff1f;那么整个社会的大的分工体系就会围绕主要矛盾开展。 《人工智能社会主要矛盾》 在农业社会&#xff0c;主要矛盾是人口增长和土地资源之间的关…

【日常记录】【JS】中文转拼音的库 pinyin-pro

文章目录 1、介绍2、pinyin-pro 基本使用3、参考链接 1、介绍 pinyin-pro 是一个专业的 JavaScript 中文转拼音的库&#xff0c;具备多音字识别准确、体积轻量、性能优异、功能丰富等特点。 常用的案例 搜索功能增强&#xff1a;在输入框输入汉字时&#xff0c;可以转化为拼音输…

[CR]厚云填补_综述整理

SAR-to-Optical Image Translation and Cloud Removal Based on Conditional Generative Adversarial Networks: Literature Survey, Taxonomy, Evaluation Indicators, Limits and Future Directions Abstract 由于光学图像的局限性&#xff0c;其波段无法穿透云层&#xff0…

算法竞赛一句话解题经典问题分析 ©ntsc 2024

原名&#xff1a;算法竞赛一句话解题&经典问题分析 ©ntsc 2024 处理进度 绿&#xff1a;P1381【~P&#xff08;今日进度&#xff09;】蓝&#xff1a;P1099 致CSDN网友&#xff1a; 本文章不定期更新&#xff01;文章链接&#xff1a; 经典问题分析 基础知识与编程…

工业互联网数字中台建设方案(ppt原件)

工业互联网数字中台解决方案旨在为企业提供全面、高效的数据驱动能力。该方案主要包括以下几个核心部分&#xff1a; 数据中台&#xff1a;作为核心&#xff0c;数据中台负责汇聚、整合、提纯和加工各类工业数据&#xff0c;实现数据资产的标准化、模型化和模块化。通过提供API…

React@16.x(23)useEffect

目录 1&#xff0c;介绍作用介绍 2&#xff0c;注意点2.1&#xff0c;参数1&#xff0c;副作用函数2.1.1&#xff0c;运行时间点2.1.2&#xff0c;返回值2.1.3&#xff0c;闭包的影响2.1.4&#xff0c;严禁出现在代码块中&#xff08;判断&#xff0c;循环&#xff09;2.1.5&am…

电阻十大品牌供应商

选型时选择热门的电阻品牌&#xff0c;主要是产品丰富&#xff0c;需求基本都能满足。 所所有的电路中&#xff0c;基本没有不用电阻的&#xff0c;电阻的选型需要参考阻值、精度、封装、温度范围&#xff0c;贴片/插件等参数&#xff0c;优秀的供应商如下&#xff1a; 十大电…

[240609] qwen2 发布,在 Ollama 已可用 | 采用语言模型构建通用 AGI(2020年8月)

目录 qwen2 发布&#xff0c;在 Ollama 已可用Qwen2 模型概览 (基于 Ollama 网站信息)一、模型介绍二、模型参数三、支持语言 (除英语和中文外)四、模型性能五、许可证六、数据支撑: 采用语言模型构建通用 AGI qwen2 发布&#xff0c;在 Ollama 已可用 Qwen2 模型概览 (基于 O…

Android基础-AIDL的实现

一、引言 在Android开发中&#xff0c;跨进程通信&#xff08;IPC&#xff0c;Inter-Process Communication&#xff09;是一个常见的需求。为了支持这种需求&#xff0c;Android提供了多种IPC机制&#xff0c;其中AIDL&#xff08;Android Interface Definition Language&…

深度学习复盘与论文复现C

文章目录 4、Distributed training4.1 GPU architecture 5、Recurrent neural network5.1 The basic structure of RNN5.2 Neural networks without hidden states5.3 Recurrent neural networks with hidden states5.4 summary 6、Language Model Dataset (lyrics from Jay Ch…

Java 泛型类,泛型方法,泛型接口和通配符(用来限定类和方法的使用范围)

测试类 package Genericity;import java.util.ArrayList;public class test {public static void main(String[] args) {// 使用泛型方法添加元素ArrayList<String> list new ArrayList<>();MyToolClass.ListAdd(list,"fdsf","dsfa");System…

Leetcode 3179. Find the N-th Value After K Seconds

Leetcode 3179. Find the N-th Value After K Seconds 1. 解题思路2. 代码实现 题目链接&#xff1a;3179. Find the N-th Value After K Seconds 1. 解题思路 这一题的话还是一个动态规划的问题&#xff0c;核心递推关系式为&#xff1a; dp(n, k) dp(n-1, k) dp(n, k)我…

未在本地计算机上注册“Microsoft.ACE.OLEDB.12.0”提供程序。.net 读取excel的时候报错(实测有效)

1. 下载AccessDatabaseEngine.exe 下载链接 添加链接描述 2. office excel是64为的需要安装【AccessDatabaseEngine.exe】、32位的【AccessDatabaseEngine_X64.exe】 3. 我的是64为&#xff0c;跳过32位安装检测 1. 找到下载的安装包 2.输入安装包文件全称并在后面加上/pas…

golang的函数为什么能有多个返回值?

在golang1.17之前&#xff0c;函数的参数和返回值都是放在函数栈里面的&#xff0c;比如函数A调用函数B&#xff0c;那么B的实参和返回值都是存放在函数A的栈里面&#xff0c;所以可以轻松的返回多个值。 其他的编程语言大都使用某个寄存器来存储函数的返回值。 但是从golang…

使用亚马逊 Bedrock:Serverless LLM apps with Amazon Bedrock

Serverless LLM apps with Amazon Bedrock 本文是学习 https://www.deeplearning.ai/short-courses/serverless-llm-apps-amazon-bedrock/ 这门课的学习笔记。 What you’ll learn in this course In this course, you’ll learn how to deploy a large language model-based…

MySQL之多表查询—列子查询

一、引言 标量子查询上篇博客已学习。接下来这篇博客学习子查询的第二种形式——列子查询 列子查询 子查询返回的结果是一列&#xff08;当然也可以是多行)&#xff0c;这种子查询称为列子查询。 列子查询可以使用的操作符 IN、NOT IN 、ANY&#xff08;any&#xff09;、SOME…

在Ubuntu中进行PX4配置的过程中出现以下报错,且不能正常打开gazebo

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…

华为坤灵路由器配置SSH

配置SSH服务器的管理网口IP地址。 <HUAWEI> system-view [HUAWEI] sysname SSH Server [SSH Server] interface meth 0/0/0 [SSH Server-MEth0/0/0] ip address 10.248.103.194 255.255.255.0 [SSH Server-MEth0/0/0] quit 在SSH服务器端生成本地密钥对。 [SSH Server…