使用亚马逊 Bedrock:Serverless LLM apps with Amazon Bedrock

Serverless LLM apps with Amazon Bedrock

本文是学习 https://www.deeplearning.ai/short-courses/serverless-llm-apps-amazon-bedrock/ 这门课的学习笔记。

在这里插入图片描述

What you’ll learn in this course

In this course, you’ll learn how to deploy a large language model-based application into production using serverless technology.

A serverless architecture enables you to quickly deploy your applications without the need to manage and scale the infrastructure that it runs on.

You’ll learn to summarize audio files by pairing an LLM with an automatic speech recognition (ASR) model. Through hands-on exercises, you’ll build an event-driven system that automatically detects incoming customer inquiries, transcribes them with ASR and summarizes them with an LLM, using Amazon Bedrock.

After course completion, you’ll know how to:

  • Prompt an LLM and customize its responses using Amazon Bedrock.
  • Convert audio recordings into written transcripts with Amazon Transcribe, and then summarize these transcripts using an LLM, Amazon Titan.
  • Enable logging for all the calls you make to LLMs to help you maintain security, audit, and compliance standards.
  • Deploy this audio summarizer as an event-driven serverless workflow using AWS Lambda.

You’ll work with the Amazon Titan model, but in practice Amazon Bedrock allows you to use any model you prefer.

Start building serverless LLM applications with Amazon Bedrock and deploy your apps in just days.

文章目录

  • Serverless LLM apps with Amazon Bedrock
    • What you’ll learn in this course
  • Lesson 1 - Your first generations with Amazon Bedrock
      • Import all needed packages
      • Setup the Bedrock runtime
      • Generation Configuration
      • Working with other type of data
  • Lesson 2: Summarize an audio file
      • Import all needed packages
      • Let's start with transcribing an audio file
      • Now, let's use an LLM
  • Lesson 3: Enable Logging
  • Lesson 4: Deploy an AWS Lambda function
      • Create the Lambda function
  • Lesson 5: Event-driven generation
      • Deploy your lambda function
  • 后记

Lesson 1 - Your first generations with Amazon Bedrock

Welcome to Lesson 1.

You’ll start with using Amazon Bedrock to prompt a model and customize how it generates its response.

Note: To access the requirements.txt file, go to File and click on Open. Here, you will also find all helpers functions and datasets used in each lesson.

I hope you enjoy this course!

requirements.txt

# Note: To run the code in these files in your own environment you will need to install 
# some Python dependencies, and also have access to an AWS environment.  # AWS Development Environment Setup:
# ----------------------------------
# 1. Create AWS Account and an IAM user.  Follow this guide for more details: https://docs.aws.amazon.com/SetUp/latest/UserGuide/setup-overview.html
# 2. Generate some access keys for your IAM user. For more information see here: https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
# 3. Install the AWS CLI. Follow this guide for more details: https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
# 4. Configure AWS CLI: Run 'aws configure' with your access keys, set default region to 'us-west-2' for this code. For more information see here: https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-methods 
# 5. Use Boto3 for AWS SDK in Python. Your locally run code should interact with your AWS account. https://boto3.amazonaws.com/v1/documentation/api/latest/index.html# Note: If using a company AWS account, consult your AWS administrator before proceeding.# requirements file
# This code was developed and tested on Python 3.10boto3==1.28.68

Display_Helper.py

from IPython.display import HTML, display
import htmlclass Display_Helper: def wrap(self, long_string):escaped_string = html.escape(long_string)html_string = escaped_string.replace("\n", "<br>")display(HTML(f"<div style='width: 600px; word-wrap: break-word;'>{html_string}</div>"))def text_file(self, file_path):try:# Open the file and read its contents into a stringwith open(file_path, 'r', encoding='utf-8') as file:text_string = file.read()# Print the contents (optional)print(f"{file_path}:")self.wrap(text_string)except FileNotFoundError:print(f"The file {file_path} was not found.")except Exception as e:print(f"An error occurred: {e}")

Import all needed packages

import boto3
import json

Setup the Bedrock runtime

bedrock_runtime = boto3.client('bedrock-runtime', region_name='us-west-2')prompt = "Write a one sentence summary of Las Vegas."kwargs = {"modelId": "amazon.titan-text-lite-v1","contentType": "application/json","accept": "*/*","body": json.dumps({"inputText": prompt})
}
response = bedrock_runtime.invoke_model(**kwargs)
response

Output

{'ResponseMetadata': {'RequestId': 'a03a2d5a-6610-42af-bef7-b08d48bd9ad4','HTTPStatusCode': 200,'HTTPHeaders': {'date': 'Thu, 06 Jun 2024 05:10:52 GMT','content-type': 'application/json','content-length': '166','connection': 'keep-alive','x-amzn-requestid': 'a03a2d5a-6610-42af-bef7-b08d48bd9ad4','x-amzn-bedrock-invocation-latency': '1003','x-amzn-bedrock-output-token-count': '15','x-amzn-bedrock-input-token-count': '9'},'RetryAttempts': 0},'contentType': 'application/json','body': <botocore.response.StreamingBody at 0x7fa06041d270>}
response_body = json.loads(response.get('body').read())
print(json.dumps(response_body, indent=4))

Output

{"inputTextTokenCount": 9,"results": [{"tokenCount": 15,"outputText": "\nLas Vegas is known for its casinos, entertainment, and nightlife.","completionReason": "FINISH"}]
}
print(response_body['results'][0]['outputText'])

Output

print(response_body['results'][0]['outputText'])

Generation Configuration

prompt = "Write a summary of Las Vegas."
kwargs = {"modelId": "amazon.titan-text-express-v1","contentType": "application/json","accept": "*/*","body" : json.dumps({"inputText": prompt,"textGenerationConfig": {"maxTokenCount": 100,"temperature": 0.7,"topP": 0.9}})
}
response = bedrock_runtime.invoke_model(**kwargs)
response_body = json.loads(response.get('body').read())generation = response_body['results'][0]['outputText']
print(generation)

Output

Las Vegas is the 28th-most populated city in the United States, the most populated city in the state of Nevada, and the county seat of Clark County. It is an internationally renowned major resort city, known primarily for its gambling, shopping, fine dining, entertainment, and nightlife. Las Vegas is often referred to as the Entertainment Capital of the World and is famous for its luxurious casino-hotels, such as the Bellagio, Caesars Palace, and the Venetian.
print(json.dumps(response_body, indent=4))

Output

{"inputTextTokenCount": 7,"results": [{"tokenCount": 100,"outputText": "\nLas Vegas is the 28th-most populated city in the United States, the most populated city in the state of Nevada, and the county seat of Clark County. It is an internationally renowned major resort city, known primarily for its gambling, shopping, fine dining, entertainment, and nightlife. Las Vegas is often referred to as the Entertainment Capital of the World and is famous for its luxurious casino-hotels, such as the Bellagio, Caesars Palace, and the Venetian.","completionReason": "LENGTH"}]
}
kwargs = {"modelId": "amazon.titan-text-express-v1","contentType": "application/json","accept": "*/*","body" : json.dumps({"inputText": prompt,"textGenerationConfig": {"maxTokenCount": 500,"temperature": 0.7,"topP": 0.9}})
}
response = bedrock_runtime.invoke_model(**kwargs)
response_body = json.loads(response.get('body').read())generation = response_body['results'][0]['outputText']
print(generation)

Output

Las Vegas is a city in Nevada known for its luxurious casinos, hotels, and nightlife. It is a popular tourist destination and a hub for business and entertainment. Las Vegas is home to many famous landmarks, including the Las Vegas Strip, the Bellagio, and the Venetian. The city is known for its high-energy atmosphere, world-class entertainment, and luxurious accommodations. Las Vegas is also a popular destination for weddings and conventions, with many hotels and resorts offering specialized services and amenities for these events.
print(json.dumps(response_body, indent=4))

Output

{"inputTextTokenCount": 7,"results": [{"tokenCount": 104,"outputText": "\nLas Vegas is a city in Nevada known for its luxurious casinos, hotels, and nightlife. It is a popular tourist destination and a hub for business and entertainment. Las Vegas is home to many famous landmarks, including the Las Vegas Strip, the Bellagio, and the Venetian. The city is known for its high-energy atmosphere, world-class entertainment, and luxurious accommodations. Las Vegas is also a popular destination for weddings and conventions, with many hotels and resorts offering specialized services and amenities for these events.","completionReason": "FINISH"}]
}

Working with other type of data

from IPython.display import Audio
audio = Audio(filename="dialog.mp3")
display(audio)with open('transcript.txt', "r") as file:dialogue_text = file.read()print(dialogue_text)

Output

spk_0: Hi, is this the Crystal Heights Hotel in Singapore? 
spk_1: Yes, it is. Good afternoon. How may I assist you today? 
spk_0: Fantastic, good afternoon. I was looking to book a room for my 10th wedding anniversary. Ive heard your hotel offers exceptional views and services. Could you tell me more? 
spk_1: Absolutely, Alex and congratulations on your upcoming anniversary. Thats a significant milestone and wed be honored to make it a special occasion for you. We have several room types that offer stunning views of the city skyline and the fictional Sapphire Bay. Our special diamond suite even comes with exclusive access to the moonlit pool and star deck. We also have in house spa services, world class dining options and a shopping arcade. 
spk_0: That sounds heavenly. I think my spouse would love the moonlit pool. Can you help me make a reservation for one of your diamond suites with a sapphire bay view? 
spk_1: Of course. May I know the dates you planning to visit? 
spk_0: Sure. It would be from October 10th to 17th. 
spk_1: Excellent. Let me check the availability. Ah It looks like we have a diamond suite available for those dates. Would you like to proceed with the reservation? 
spk_0: Definitely. Whats included in the package? 
spk_1: Wonderful. The package includes breakfast, complimentary access to the moonlit pool and star deck. A one time spa treatment for two and a special romantic dinner at our cloud nine restaurant. 
spk_0: You making it impossible to resist. Lets go ahead with the booking. 
spk_1: Great. I'll need some personal information for the reservation. Can I get your full name, contact details and a credit card for the preauthorizations? 
spk_0: Certainly. My full name is Alexander Thompson. My contact number is 12345678910. And the credit card is, wait, did you say pre authorization? How much would that be? 
spk_1: Ah, I should have mentioned that earlier. My apologies. A pre authorization amount of '$1000' will be held on your card which would be released upon checkout. 
spk_0: '$1000'. That seems a bit excessive. Don't you think 
spk_1: I understand your concern, Alex. The pre authorization is a standard procedure to cover any incidental expenses you may incur during your stay. However, I assure you its only a hold and not an actual charge. 
spk_0: Thats still a lot. Are there any additional charges that I should know about? 
spk_1: Well, there is a 10% service charge and a 7% fantasy tax applied to the room rate. 
spk_0: Mm. You know what its a special occasion. So lets go ahead. 
spk_1: Thank you, Alex for understanding. Will ensure that your experience at Crystal Heights is well worth it. 
prompt = f"""The text between the <transcript> XML tags is a transcript of a conversation. 
Write a short summary of the conversation.<transcript>
{dialogue_text}
</transcript>Here is a summary of the conversation in the transcript:"""
kwargs = {"modelId": "amazon.titan-text-express-v1","contentType": "application/json","accept": "*/*","body": json.dumps({"inputText": prompt,"textGenerationConfig": {"maxTokenCount": 512,"temperature": 0,"topP": 0.9}})
}response = bedrock_runtime.invoke_model(**kwargs)response_body = json.loads(response.get('body').read())
generation = response_body['results'][0]['outputText']print(generation)

Output

Alex is looking to book a room for his 10th wedding anniversary at the Crystal Heights Hotel in Singapore. The hotel offers several room types that offer stunning views of the city skyline and the fictional Sapphire Bay. The special diamond suite even comes with exclusive access to the moonlit pool and star deck. The package includes breakfast, complimentary access to the moonlit pool and star deck, a one-time spa treatment for two, and a special romantic dinner at the cloud nine restaurant. A pre-authorization amount of $1000 will be held on the card, which will be released upon checkout. There is a 10% service charge and a 7% fantasy tax applied to the room rate.

Lesson 2: Summarize an audio file

在这里插入图片描述

Import all needed packages

import os
from IPython.display import Audio
import boto3
import uuid
import time
import json
from jinja2 import Template

Let’s start with transcribing an audio file

audio = Audio(filename="dialog.mp3")
display(audio)

2 client

s3_client = boto3.client('s3', region_name='us-west-2')
bucket_name = os.environ['BucketName']
file_name = 'dialog.mp3'
s3_client.upload_file(file_name, bucket_name, file_name)transcribe_client = boto3.client('transcribe', region_name='us-west-2')
job_name = 'transcription-job-' + str(uuid.uuid4())
response = transcribe_client.start_transcription_job(TranscriptionJobName=job_name,Media={'MediaFileUri': f's3://{bucket_name}/{file_name}'},MediaFormat='mp3',LanguageCode='en-US',OutputBucketName=bucket_name,Settings={'ShowSpeakerLabels': True,'MaxSpeakerLabels': 2}
)
while True:status = transcribe_client.get_transcription_job(TranscriptionJobName=job_name)if status['TranscriptionJob']['TranscriptionJobStatus'] in ['COMPLETED', 'FAILED']:breaktime.sleep(2)
print(status['TranscriptionJob']['TranscriptionJobStatus'])

Output

COMPLETED
if status['TranscriptionJob']['TranscriptionJobStatus'] == 'COMPLETED':# Load the transcript from S3.transcript_key = f"{job_name}.json"transcript_obj = s3_client.get_object(Bucket=bucket_name, Key=transcript_key)transcript_text = transcript_obj['Body'].read().decode('utf-8')transcript_json = json.loads(transcript_text)output_text = ""current_speaker = Noneitems = transcript_json['results']['items']for item in items:speaker_label = item.get('speaker_label', None)content = item['alternatives'][0]['content']# Start the line with the speaker label:if speaker_label is not None and speaker_label != current_speaker:current_speaker = speaker_labeloutput_text += f"\n{current_speaker}: "# Add the speech content:if item['type'] == 'punctuation':output_text = output_text.rstrip()output_text += f"{content} "# Save the transcript to a text filewith open(f'{job_name}.txt', 'w') as f:f.write(output_text)

Now, let’s use an LLM

bedrock_runtime = boto3.client('bedrock-runtime', region_name='us-west-2')
with open(f'{job_name}.txt', "r") as file:transcript = file.read()
%%writefile prompt_template.txt
I need to summarize a conversation. The transcript of the 
conversation is between the <data> XML like tags.<data>
{{transcript}}
</data>The summary must contain a one word sentiment analysis, and 
a list of issues, problems or causes of friction
during the conversation. The output must be provided in 
JSON format shown in the following example. Example output:
{"sentiment": <sentiment>,"issues": [{"topic": <topic>,"summary": <issue_summary>,}]
}Write the JSON output and nothing more.Here is the JSON output:
with open('prompt_template.txt', "r") as file:template_string = file.read()data = {'transcript' : transcript
}
template = Template(template_string)
prompt = template.render(data)
kwargs = {"modelId": "amazon.titan-text-express-v1","contentType": "application/json","accept": "*/*","body": json.dumps({"inputText": prompt,"textGenerationConfig": {"maxTokenCount": 512,"temperature": 0,"topP": 0.9}})
}
response = bedrock_runtime.invoke_model(**kwargs)
response_body = json.loads(response.get('body').read())
generation = response_body['results'][0]['outputText']
print(generation)

Output

{"sentiment": "Positive","issues": []
}

Lesson 3: Enable Logging

import boto3
import json
import osbedrock = boto3.client('bedrock', region_name="us-west-2")from helpers.CloudWatchHelper import CloudWatch_Helper
cloudwatch = CloudWatch_Helper()
log_group_name = '/my/amazon/bedrock/logs'
cloudwatch.create_log_group(log_group_name)

Output

Log group '/my/amazon/bedrock/logs' created successfully

Permissions

在这里插入图片描述

loggingConfig = {'cloudWatchConfig': {'logGroupName': log_group_name,'roleArn': os.environ['LOGGINGROLEARN'],'largeDataDeliveryS3Config': {'bucketName': os.environ['LOGGINGBUCKETNAME'],'keyPrefix': 'amazon_bedrock_large_data_delivery',}},'s3Config': {'bucketName': os.environ['LOGGINGBUCKETNAME'],'keyPrefix': 'amazon_bedrock_logs',},'textDataDeliveryEnabled': True,
}
bedrock.put_model_invocation_logging_configuration(loggingConfig=loggingConfig)

Output

{'ResponseMetadata': {'RequestId': 'ff946ac9-3b70-46b3-813a-3df74e5a3249','HTTPStatusCode': 200,'HTTPHeaders': {'date': 'Thu, 06 Jun 2024 05:54:13 GMT','content-type': 'application/json','content-length': '2','connection': 'keep-alive','x-amzn-requestid': 'ff946ac9-3b70-46b3-813a-3df74e5a3249'},'RetryAttempts': 0}}
bedrock.get_model_invocation_logging_configuration()

Output

{'ResponseMetadata': {'RequestId': '9d7ed35e-e290-42ad-bd7b-af4e4cf0adc7','HTTPStatusCode': 200,'HTTPHeaders': {'date': 'Thu, 06 Jun 2024 05:54:13 GMT','content-type': 'application/json','content-length': '572','connection': 'keep-alive','x-amzn-requestid': '9d7ed35e-e290-42ad-bd7b-af4e4cf0adc7'},'RetryAttempts': 0},'loggingConfig': {'cloudWatchConfig': {'logGroupName': '/my/amazon/bedrock/logs','roleArn': 'arn:aws:iam::359221361672:role/c99355a2566044l6746327t1w43396592481-LoggingIAMRole-02xH6ovfIJxX','largeDataDeliveryS3Config': {'bucketName': 'c99355a2566044l6746327t1w433965924-loggings3bucket-ujar4vdntz1x','keyPrefix': 'amazon_bedrock_large_data_delivery'}},'s3Config': {'bucketName': 'c99355a2566044l6746327t1w433965924-loggings3bucket-ujar4vdntz1x','keyPrefix': 'amazon_bedrock_logs'},'textDataDeliveryEnabled': True,'imageDataDeliveryEnabled': True,'embeddingDataDeliveryEnabled': True}}
bedrock_runtime = boto3.client('bedrock-runtime', region_name="us-west-2")prompt = "Write an article about the fictional planet Foobar."kwargs = {"modelId": "amazon.titan-text-express-v1","contentType": "application/json","accept": "*/*","body": json.dumps({"inputText": prompt,"textGenerationConfig": {"maxTokenCount": 512,"temperature": 0.7,"topP": 0.9}})
}response = bedrock_runtime.invoke_model(**kwargs)
response_body = json.loads(response.get('body').read())generation = response_body['results'][0]['outputText']print(generation)

Output

Foobar is a fictional planet from the television series "Futurama." It is a planet that is home to a race of creatures known as the Foobars. The Foobars are a peaceful, intelligent species that are known for their advanced technology and culture.One of the most notable features of Foobar is its technology. The planet is home to a number of advanced technologies, including flying cars, teleporters, and robots. The Foobars have also developed a form of energy that is renewable and sustainable, which they use to power their cities and devices.Another important aspect of Foobar culture is its art and music. The Foobars are known for their vibrant and colorful art, which often depicts their advanced technology and natural landscapes. Music is also an important part of Foobar culture, with a variety of genres and styles being played throughout the planet.Despite its advanced technology and peaceful culture, Foobar is not without its challenges. The planet is located in a remote part of the galaxy, making it difficult for other species to reach and interact with. Additionally, Foobar is threatened by a number of natural disasters, including hurricanes and earthquakes.Despite these challenges, the Foobars continue to thrive and grow. They are a proud and resilient species, and their technology and culture continue to inspire and amaze other species in the galaxy. Foobar is a fictional planet that has captured the imagination of millions of people around the world. Its advanced technology, peaceful culture, and unique art and music make it a fascinating and exciting place to explore. Whether you are a fan of "Futurama" or just looking for a new and exciting world to explore, Foobar is a great choice.
cloudwatch.print_recent_logs(log_group_name)

Output

Permissions are correctly set for Amazon Bedrock logs.

Lesson 4: Deploy an AWS Lambda function

在这里插入图片描述

Lambda_Helper.py

import boto3
import zipfile
import json
import osclass Lambda_Helper: def __init__(self):# Get the account ID being usedsts_client = boto3.client('sts')response = sts_client.get_caller_identity()account_id = response['Account']# Create a Boto3 client for the Lambda serviceself.lambda_client = boto3.client('lambda', region_name='us-west-2')  self.function_name = 'LambdaFunctionDLAICourse'self.role_arn = f"arn:aws:iam::{account_id}:role/LambdaRoleDLAICourse"self.function_description = "Lambda function uploaded by a notebook in a DLAI course."self.lambda_arn = ""self.lambda_environ_variables = {}self.filter_rules_suffix = ""self.s3_client = boto3.client('s3', region_name='us-west-2')def deploy_function(self, code_file_names, function_name=""):if function_name:self.function_name = function_nameelse:print(f"Using function name: {self.function_name}")print('Zipping function...')zip_file_path = 'lambda_function.zip'with zipfile.ZipFile(zip_file_path, 'w') as zipf:for code_file_name in code_file_names:zipf.write(code_file_name, arcname=code_file_name)try:print('Looking for existing function...')# Try to get the details of the Lambda functionself.lambda_client.get_function(FunctionName=self.function_name)# If the function exists, update its codeprint(f"Function {self.function_name} exists. Updating code...")response = self.lambda_client.update_function_code(FunctionName=self.function_name,ZipFile=open(zip_file_path, 'rb').read()  # Read the ZIP file and provide its content)print(f"Function {self.function_name} code updated: {response['LastModified']}")self.lambda_arn = response['FunctionArn']print("Done.")except self.lambda_client.exceptions.ResourceNotFoundException:# If the function does not exist, create a new oneprint(f"Function {self.function_name} does not exist. Creating...")response = self.lambda_client.create_function(FunctionName=self.function_name,Runtime='python3.11',Role=self.role_arn,Handler='lambda_function.lambda_handler',Description=self.function_description,Layers=[os.environ['LAMBDALAYERVERSIONARN']],Timeout=120,Code={'ZipFile': open(zip_file_path, 'rb').read()},Environment= {'Variables': self.lambda_environ_variables })print(f"Function {self.function_name} created: {response['FunctionArn']}")self.lambda_arn = response['FunctionArn']print("Done.")except Exception as e:# Handle other potential exceptionsprint(f"An error occurred: {e}")self.lambda_arn = ""print("Done, with error.")def add_lambda_trigger(self, bucket_name, function_name=""):if function_name:self.function_name = function_nameelse:print(f"Using function name of deployed function: {self.function_name}")# Check and remove existing permissions for the specific source (S3 bucket)try:policy = self.lambda_client.get_policy(FunctionName=self.function_name)['Policy']policy_dict = json.loads(policy)for statement in policy_dict['Statement']:if statement['Action'] == 'lambda:InvokeFunction' and self.lambda_arn in statement['Resource']:self.lambda_client.remove_permission(FunctionName=self.function_name,StatementId=statement['Sid'])print(f"Removed existing permission: {statement['Sid']}")except self.lambda_client.exceptions.ResourceNotFoundException:# Handle if the policy is not found - might mean function has no permissions setpassexcept Exception as e:# Handle other exceptionsprint(f"Error checking for existing permissions: {e}")return# Grant permission to S3 to invoke the Lambda functiontry:response = self.lambda_client.add_permission(FunctionName=self.function_name,Action='lambda:InvokeFunction',Principal='s3.amazonaws.com',StatementId='s3-trigger-permission',  # A unique statement IDSourceArn=f"arn:aws:s3:::{bucket_name}")print_out = json.dumps(json.loads(response['Statement']), indent=4)print(f"Permission added with Statement: {print_out}")except Exception as e:print(f"Error adding Lambda permission: {e}")return# Add bucket notification to trigger the Lambda functionlambda_arn = self.lambda_client.get_function(FunctionName=self.function_name)['Configuration']['FunctionArn']notification_configuration = {'LambdaFunctionConfigurations': [{'LambdaFunctionArn': lambda_arn,'Events': ['s3:ObjectCreated:*'],'Filter': {'Key': {'FilterRules': [{'Name': 'suffix','Value': self.filter_rules_suffix}]}}}]}try:self.s3_client.put_bucket_notification_configuration(Bucket=bucket_name,NotificationConfiguration=notification_configuration)print(f"Trigger added for {bucket_name} -> {self.function_name}")except Exception as e:print(f"Error setting S3 notification: {e}")

S3_Helper.py

import boto3
import json
import osclass S3_Helper: def __init__(self):# Get the account ID being usedsts_client = boto3.client('sts')response = sts_client.get_caller_identity()account_id = response['Account']# Create a Boto3 client for the S3 service      self.s3_client = boto3.client('s3', region_name='us-west-2')def list_objects(self, bucket_name):try:# List objects within the bucketresponse = self.s3_client.list_objects_v2(Bucket=bucket_name)# Check if the bucket has any objectsif 'Contents' in response:for obj in response['Contents']:key = obj['Key']creation_time = obj['LastModified']print(f"Object: {key}, Created on: {creation_time}")else:print(f"No objects found in the bucket: {bucket_name}")except Exception as e:print(f"Error: {str(e)}")def upload_file(self, bucket_name, file_name):try:# Upload file to an S3 object from the specified local pathself.s3_client.upload_file(file_name, bucket_name, file_name)print(f"Object '{file_name}' uploaded to bucket '{bucket_name}'")except Exception as e:print(f"Error: {str(e)}")def download_object(self, bucket_name, object_key):try:# Download the object from S3 to the specified local pathself.s3_client.download_file(bucket_name, object_key, f"./{object_key}")print(f"Object '{object_key}' from bucket '{bucket_name}' to './{object_key}'")except Exception as e:print(f"Error: {str(e)}")
import boto3, os
from helpers.Lambda_Helper import Lambda_Helper
from helpers.S3_Helper import S3_Helper
from helpers.Display_Helper import Display_Helperlambda_helper = Lambda_Helper()
# deploy_function
# add_lambda_triggers3_helper = S3_Helper()
# upload_file
# download_object 
# list_objectsdisplay_helper = Display_Helper()
# text_file
# json_filebucket_name_text = os.environ['LEARNERS3BUCKETNAMETEXT']
%%writefile prompt_template.txt
I need to summarize a conversation. The transcript of the conversation is between the <data> XML like tags.<data>
{{transcript}}
</data>The summary must contain a one word sentiment analysis, and a list of issues, problems or causes of friction
during the conversation. The output must be provided in JSON format shown in the following example. Example output:
{"version": 0.1,"sentiment": <sentiment>,"issues": [{"topic": <topic>,"summary": <issue_summary>,}]
}An `issue_summary` must only be one of:
{%- for topic in topics %}- `{{topic}}`
{% endfor %}Write the JSON output and nothing more.Here is the JSON output:

Create the Lambda function

%%writefile lambda_function.py#############################################################
#
# This Lambda function is written to a file by the notebook 
# It does not run in the notebook!
#
#############################################################import boto3
import json 
from jinja2 import Templates3_client = boto3.client('s3')
bedrock_runtime = boto3.client('bedrock-runtime', 'us-west-2')def lambda_handler(event, context):bucket = event['Records'][0]['s3']['bucket']['name']key = event['Records'][0]['s3']['object']['key']# One of a few different checks to ensure we don't end up in a recursive loop.if "-transcript.json" not in key: print("This demo only works with *-transcript.json.")returntry: file_content = ""response = s3_client.get_object(Bucket=bucket, Key=key)file_content = response['Body'].read().decode('utf-8')transcript = extract_transcript_from_textract(file_content)print(f"Successfully read file {key} from bucket {bucket}.")print(f"Transcript: {transcript}")summary = bedrock_summarisation(transcript)s3_client.put_object(Bucket=bucket,Key='results.txt',Body=summary,ContentType='text/plain')except Exception as e:print(f"Error occurred: {e}")return {'statusCode': 500,'body': json.dumps(f"Error occurred: {e}")}return {'statusCode': 200,'body': json.dumps(f"Successfully summarized {key} from bucket {bucket}. Summary: {summary}")}def extract_transcript_from_textract(file_content):transcript_json = json.loads(file_content)output_text = ""current_speaker = Noneitems = transcript_json['results']['items']# Iterate through the content word by word:for item in items:speaker_label = item.get('speaker_label', None)content = item['alternatives'][0]['content']# Start the line with the speaker label:if speaker_label is not None and speaker_label != current_speaker:current_speaker = speaker_labeloutput_text += f"\n{current_speaker}: "# Add the speech content:if item['type'] == 'punctuation':output_text = output_text.rstrip()  # Remove the last spaceoutput_text += f"{content} "return output_textdef bedrock_summarisation(transcript):with open('prompt_template.txt', "r") as file:template_string = file.read()data = {'transcript': transcript,'topics': ['charges', 'location', 'availability']}template = Template(template_string)prompt = template.render(data)print(prompt)kwargs = {"modelId": "amazon.titan-text-express-v1","contentType": "application/json","accept": "*/*","body": json.dumps({"inputText": prompt,"textGenerationConfig": {"maxTokenCount": 2048,"stopSequences": [],"temperature": 0,"topP": 0.9}})}response = bedrock_runtime.invoke_model(**kwargs)summary = json.loads(response.get('body').read()).get('results')[0].get('outputText')    return summary
lambda_helper.deploy_function(["lambda_function.py", "prompt_template.txt"],function_name="LambdaFunctionSummarize"
)

Output

Zipping function...
Looking for existing function...
Function LambdaFunctionSummarize exists. Updating code...
Function LambdaFunctionSummarize code updated: 2024-06-06T06:45:47.000+0000
Done.
lambda_helper.filter_rules_suffix = "json"
lambda_helper.add_lambda_trigger(bucket_name_text)

Output

Using function name of deployed function: LambdaFunctionSummarize
Removed existing permission: s3-trigger-permission
Permission added with Statement: {"Sid": "s3-trigger-permission","Effect": "Allow","Principal": {"Service": "s3.amazonaws.com"},"Action": "lambda:InvokeFunction","Resource": "arn:aws:lambda:us-west-2:880695732601:function:LambdaFunctionSummarize","Condition": {"ArnLike": {"AWS:SourceArn": "arn:aws:s3:::c99355a2566046l6746328t1w394701795-learners3bucket-gjbuopo2mr67"}}
}
Trigger added for c99355a2566046l6746328t1w394701795-learners3bucket-gjbuopo2mr67 -> LambdaFunctionSummarize
s3_helper.upload_file(bucket_name_text, 'demo-transcript.json')
s3_helper.download_object(bucket_name_text, "results.txt")
display_helper.text_file('results.txt')

Output

在这里插入图片描述

Lesson 5: Event-driven generation

import boto3, osfrom helpers.Lambda_Helper import Lambda_Helper
from helpers.S3_Helper import S3_Helperlambda_helper = Lambda_Helper()
s3_helper = S3_Helper()bucket_name_text = os.environ['LEARNERS3BUCKETNAMETEXT']
bucket_name_audio = os.environ['LEARNERS3BUCKETNAMEAUDIO']

Deploy your lambda function

%%writefile lambda_function.py#############################################################
#
# This Lambda function is written to a file by the notebook 
# It does not run in the notebook!
#
#############################################################import json
import boto3
import uuid
import oss3_client = boto3.client('s3')
transcribe_client = boto3.client('transcribe', region_name='us-west-2')def lambda_handler(event, context):# Extract the bucket name and key from the incoming eventbucket = event['Records'][0]['s3']['bucket']['name']key = event['Records'][0]['s3']['object']['key']# One of a few different checks to ensure we don't end up in a recursive loop.if key != "dialog.mp3": print("This demo only works with dialog.mp3.")returntry:job_name = 'transcription-job-' + str(uuid.uuid4()) # Needs to be a unique nameresponse = transcribe_client.start_transcription_job(TranscriptionJobName=job_name,Media={'MediaFileUri': f's3://{bucket}/{key}'},MediaFormat='mp3',LanguageCode='en-US',OutputBucketName= os.environ['S3BUCKETNAMETEXT'],  # specify the output bucketOutputKey=f'{job_name}-transcript.json',Settings={'ShowSpeakerLabels': True,'MaxSpeakerLabels': 2})except Exception as e:print(f"Error occurred: {e}")return {'statusCode': 500,'body': json.dumps(f"Error occurred: {e}")}return {'statusCode': 200,'body': json.dumps(f"Submitted transcription job for {key} from bucket {bucket}.")}

Output

Writing lambda_function.py
lambda_helper.lambda_environ_variables = {'S3BUCKETNAMETEXT' : bucket_name_text}
lambda_helper.deploy_function(["lambda_function.py"], function_name="LambdaFunctionTranscribe")

Output

Zipping function...
Looking for existing function...
Function LambdaFunctionTranscribe does not exist. Creating...
Function LambdaFunctionTranscribe created: arn:aws:lambda:us-west-2:169601639897:function:LambdaFunctionTranscribe
Done.
lambda_helper.filter_rules_suffix = "mp3"
lambda_helper.add_lambda_trigger(bucket_name_audio, function_name="LambdaFunctionTranscribe")

Output

Permission added with Statement: {"Sid": "s3-trigger-permission","Effect": "Allow","Principal": {"Service": "s3.amazonaws.com"},"Action": "lambda:InvokeFunction","Resource": "arn:aws:lambda:us-west-2:169601639897:function:LambdaFunctionTranscribe","Condition": {"ArnLike": {"AWS:SourceArn": "arn:aws:s3:::c99355a2566048l6746330t1w5617-learneraudios3bucket-yn6dipq6a3lu"}}
}
Trigger added for c99355a2566048l6746330t1w5617-learneraudios3bucket-yn6dipq6a3lu -> LambdaFunctionTranscribe
s3_helper.upload_file(bucket_name_audio, 'dialog.mp3')

Output

Object 'dialog.mp3' uploaded to bucket 'c99355a2566048l6746330t1w5617-learneraudios3bucket-yn6dipq6a3lu'
s3_helper.list_objects(bucket_name_audio)

Output

Object: dialog.mp3, Created on: 2024-06-06 07:15:08+00:00
s3_helper.list_objects(bucket_name_text)

Output

Object: .write_access_check_file.temp, Created on: 2024-06-06 07:15:10+00:00
Object: results.txt, Created on: 2024-06-06 07:15:36+00:00
Object: transcription-job-dab704ca-7fa6-4200-961e-16d4b60e6212-transcript.json, Created on: 2024-06-06 07:15:30+00:00
s3_helper.download_object(bucket_name_text, 'results.txt')

Output

Object 'results.txt' from bucket 'c99355a2566048l6746330t1w56172-learnertexts3bucket-dccaxvbtixou' to './results.txt'
from helpers.Display_Helper import Display_Helper
display_helper = Display_Helper()
display_helper.text_file('results.txt')

Output

results.txt:{"version": 0.1,"sentiment": "positive","issues": [{"topic": "charges","summary": "pre authorization of $1000 is excessive"}]
}

Extra resources:

  • Generative AI code

  • Generative AI

后记

2024年6月6日15点24分完成这门short course。基于Amazon Bedrock使用大模型以及event-driven serverless workflow using AWS Lambda。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/25392.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL之多表查询—列子查询

一、引言 标量子查询上篇博客已学习。接下来这篇博客学习子查询的第二种形式——列子查询 列子查询 子查询返回的结果是一列&#xff08;当然也可以是多行)&#xff0c;这种子查询称为列子查询。 列子查询可以使用的操作符 IN、NOT IN 、ANY&#xff08;any&#xff09;、SOME…

在Ubuntu中进行PX4配置的过程中出现以下报错,且不能正常打开gazebo

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…

华为坤灵路由器配置SSH

配置SSH服务器的管理网口IP地址。 <HUAWEI> system-view [HUAWEI] sysname SSH Server [SSH Server] interface meth 0/0/0 [SSH Server-MEth0/0/0] ip address 10.248.103.194 255.255.255.0 [SSH Server-MEth0/0/0] quit 在SSH服务器端生成本地密钥对。 [SSH Server…

Sylar---协程调度模块

协程调度模块&#xff1a; 首先是协程任务类FiberAndThread,包括协程&#xff0c;函数&#xff0c;指定的线程&#xff1b;提供了五个构造函数&#xff0c;只传协程的智能指针&#xff0c;只传函数对象&#xff0c;传协程智能指针的指针&#xff0c;函数对象指针&#xff0c;还…

[AIGC] 请问这个 Trie 树的实现是否可以处理其他字符,而不仅限于小写英文字母?

我们的当前Trie树实现主要针对小写字母a-z&#xff0c;因为我们在TrieNode中初始化了一个长度为26的链接数组links&#xff0c;每个index对应a-z中的一个字母。 当然&#xff0c;我们可以对这个实现进行扩展&#xff0c;以处理包含更多类型字符的情况。例如&#xff0c;如果我…

山水有相逢 来日皆可期

毕业接踵而至&#xff0c;大家都在拍照记录留恋毕业的美好时光碎片。但由于最近实在“玩得太嗨”&#xff0c;无心拍毕业照。 默海笑&#xff0c;当然是需要用自己的方式来为这浑浑噩噩的大学生活画上句号。 我相信&#xff0c;毕业时的你我都会无比的感慨&#xff0c;为什么时…

手把手教你从入门到精通C# 操作MySql数据库

前言 我们在开发上位机软件的时候&#xff0c;经常需要将一些数据存储起来&#xff0c;然后这些数据需要提供历史数据查询功能&#xff0c;并且这些数据的数据量很大&#xff0c;这时候我们就需要使用数据库&#xff0c;在上位机开发领域有很多种数据库&#xff0c;sqlserver、…

完全免费、无广告且开源的格式转换工具

一、简介 1、一款完全免费、无广告且开源的格式转换工具&#xff0c;支持超过200种文件格式的转换。它能够处理视频、音频、图像、文档、电子书等多种类型的文件&#xff0c;功能非常强大。该软件由GitHub上的一位开发者发布&#xff0c;目的是为了让用户能够轻松地完成文件转换…

[AIGC] Java CompletableFuture详解

Java中的CompletableFuture用于异步编程&#xff0c;是Future接口的增强版。本篇文章我们将详细探讨Java中的CompletableFuture。 CompletableFuture介绍 CompletableFuture是java.util.concurrent包的一个类&#xff0c;该类实现了Future和CompletionStage接口。主要用于表示…

Java 18风暴来袭:解锁编程新纪元

一、引言 Java 18的发布标志着Java语言在性能、安全性和开发效率方面的又一次飞跃。本次更新不仅带来了新的语言特性&#xff0c;还包括了一些实验性功能和工具的改进。这些新特性旨在帮助开发者编写更高效、更安全的代码&#xff0c;并提升开发体验。 二、新特性概述 1. 默…

Docker面试整理-什么是多阶段构建?它的好处是什么?

多阶段构建是 Docker 在 Dockerfile 中引入的一个功能,允许你在单个 Dockerfile 中使用多个构建阶段,但最终只生成一个轻量级的镜像。这是通过在一个 Dockerfile 中定义多个 FROM 指令来实现的,每个 FROM 指令都可以使用不同的基础镜像,并开始一个新的构建阶段。 多阶段构建…

【Tools】了解 VPN 和 VPS:它们是什么,有何不同?

我已经从你的 全世界路过 像一颗流星 划过命运 的天空 很多话忍住了 不能说出口 珍藏在 我的心中 只留下一些回忆 &#x1f3b5; 牛奶咖啡《从你的全世界路过》 在当今的数字世界中&#xff0c;VPN&#xff08;虚拟专用网络&#xff09;和 VPS&#xff08…

【TensorFlow深度学习】强化学习中的贝尔曼方程及其应用

强化学习中的贝尔曼方程及其应用 强化学习中的贝尔曼方程及其应用&#xff1a;理解与实战演练贝尔曼方程简介应用场景代码实例&#xff1a;使用Python实现贝尔曼方程求解状态价值结语 强化学习中的贝尔曼方程及其应用&#xff1a;理解与实战演练 在强化学习这一复杂而迷人的领…

Triton学习笔记

b站链接&#xff1a;合集Triton 从入门到精通 文章目录 算法名词解释&#xff1a;scheduler 任务调度器model instance、inference和requestbatching 一、Triton Inference Server原理1. Overview of Trition2. Design Basics of Trition3. Auxiliary Features of Trition4. A…

Spring Cloud Gateway CORS 跨域方案

通过配置文件&#xff0c;以下配置就是其中一种方案。 gateway: #跨域配置globalcors: cors-configurations: [/**]: allowedMethods: "*"allowedHeaders: "*"allowedOriginPatterns: "*"allowCredentials: truedefault-filters: - DedupeRespo…

电脑响度均衡是什么?它如何开启?

什么是响度均衡 响度均衡&#xff08;Loudness Equalization&#xff09;是一种音频处理技术&#xff0c;旨在平衡音频信号的响度水平&#xff0c;使得不同音源在播放时具有相似的响度感受。简单来说&#xff0c;它可以让用户在播放不同音轨或音频内容时&#xff0c;不需要频繁…

从反向传播过程看激活函数与权重初始化的选择对深度神经网络稳定性的影响

之前使用深度学习时一直对各种激活函数和权重初始化策略信手拈用&#xff0c;然而不能只知其表不知其里。若想深入理解为何选择某种激活函数和权重初始化方法卓有成效还是得回归本源&#xff0c;本文就从反向传播的计算过程来按图索骥。 为了更好地演示深度学习中的前向传播和…

为什么Kubernetes(K8S)弃用Docker:深度解析与未来展望

为什么Kubernetes弃用Docker&#xff1a;深度解析与未来展望 &#x1f680; 为什么Kubernetes弃用Docker&#xff1a;深度解析与未来展望摘要引言正文内容&#xff08;详细介绍&#xff09;什么是 Kubernetes&#xff1f;什么是 Docker&#xff1f;Kubernetes 和 Docker 的关系…

【代码随想录算法训练Day30】LeetCode 332.重新安排行程、LeetCode 51.N皇后、LeetCode 37.解数独

Day30 回溯第六天 LeetCode 332.重新安排行程 看了半天也没看懂题&#xff0c;以后再来。 LeetCode 51.N皇后 N皇后题目是回溯算法的经典题目&#xff0c;这道题的难度在思维。我们如何才能正确遍历二维数组&#xff0c;如何确定皇后的摆放位置&#xff0c;这些是本题的难点…

React@16.x(24)自定义HOOK

目录 1&#xff0c;介绍2&#xff0c;简单举例2.1&#xff0c;获取数据1.2&#xff0c;计时器 2&#xff0c;自定义 HOOK 相比类组件 1&#xff0c;介绍 将一些常用的&#xff0c;跨组件的函数抽离&#xff0c;做成公共函数也就是 HOOK。自定义HOOK需要按照HOOK的规则来实现&a…