DeepDriving | 多目标跟踪算法之SORT

本文来源公众号“DeepDriving”,仅用于学术分享,侵权删,干货满满。

原文链接:多目标跟踪算法之SORT

1 简介

SORT2016年发表的一篇文章Simple Online and Realtime Tracking中提出的一个经典的多目标跟踪算法,该算法结合常用的卡尔曼滤波器和匈牙利匹配算法实现了一个简单的在线多目标跟踪框架。由于其超简单的设计,SORT可以以260 Hz的更新速率实现多目标跟踪,远超当时其它的目标跟踪算法。

论文地址:https://arxiv.org/abs/1602.00763

代码地址:https://github.com/abewley/sort

2 具体实现

2.1 目标检测

SORT是一种采用Tracking-by-Detection策略的目标跟踪算法,也就是说算法的输入数据来源于目标检测器,其本身是不参与目标检测过程的。作者在论文里对比了以Faster-RCNNACFPASCAL VOC数据集上的行人检测结果作为MDPSORT跟踪算法的输入,得出的结论是目标检测结果的好坏直接决定了目标跟踪的性能,使用最好的目标检测器会得到最好的跟踪效果

这也告诉我们一个道理:解决问题要从源头开始。如果不从源头提升目标检测算法的性能,花再多时间去提升目标跟踪的性能可能都是徒劳。

2.2 状态估计模型

如果对卡尔曼滤波器不了解,可以看一下我之前整理的资料,里面有卡尔曼滤波器的详细推导过程:(后续文章介绍)。

2.3 数据关联

给已存在的目标分配当前帧检测到的边界框时,目标在当前帧中的边界框是基于之前的状态预测出来的。所有当前帧检测的边界框与已存在目标做预测得到的边界框通过计算它们之间的IOU来求代价矩阵,然后用匈牙利算法求解最优匹配结果。如果检测边界框与预测边界框匹配成功且它们之间的IOU值大于阈值IOU_min,那么就认为它们是一对有效的匹配对,否则是无效的。匹配成功后,就可以基于检测的边界框对目标状态进行更新了。

作者发现采用IOU作为距离度量进行匹配可以隐式地解决由于传递目标引起的短期遮挡的问题。具体来说,当一个目标被另一个物体覆盖时,检测器只能检测到这个遮挡物体而检测不到被遮挡物体,因为IOU距离有利于具有相似比例的检测框。这样的话遮挡物体可以正常被分配检测框去更新状态,而被遮挡物体则不会受误分配带来的影响,因为当前没有检测框会分配给它。

2.4 跟踪标识的创建和删除

当一个目标出现在图像中的时候,我们需要为其创建一个全局唯一的身份标识(ID);反之,当目标消失的时候就要销毁它的跟踪信息。

3 代码分析

3.1 算法整体流程

SORT算法的处理流程非常简单,感兴趣的可以去看源码。下图是我整理的算法流程图:

对当前帧的检测结果Detections和已存在的目标Tracker使用匈牙利算法进行匹配会出现三种情况:

  1. 检测结果Detection未匹配成功,那么就以该边界框的几何信息为初始状态去创建一个Tracker;

  2. 检测结果DetectionTracker匹配成功,那么就以该检测结果为观测值更新Tracker的状态;

  3. 未匹配的Tracker,前面说到T_Lost设置为1,也就是只要一帧没匹配上该Tracker就会被删除。

3.2 卡尔曼滤波器

SORT的代码里创建了一个类KalmanBoxTracker用于对卡尔曼滤波器的状态进行管理,卡尔曼滤波器使用的是filterpy.kalman包中的KalmanFilter,官方文档地址为:https://filterpy.readthedocs.io/en/latest/kalman/KalmanFilter.html。

3.2.1. 滤波器初始化

 def __init__(self,bbox):# 创建卡尔曼滤波器时需设置状态向量和观测向量的维度self.kf = KalmanFilter(dim_x=7, dim_z=4) # 状态转移矩阵self.kf.F = np.array([[1, 0, 0, 0, 1, 0, 0],[0, 1, 0, 0, 0, 1, 0],[0, 0, 1, 0, 0, 0, 1],[0, 0, 0, 1, 0, 0, 0],[0, 0, 0, 0, 1, 0, 0],[0, 0, 0, 0, 0, 1, 0],[0, 0, 0, 0, 0, 0, 1]])# 观测矩阵self.kf.H = np.array([[1, 0, 0, 0, 0, 0, 0],[0, 1, 0, 0, 0, 0, 0],[0, 0, 1, 0, 0, 0, 0],[0, 0, 0, 1, 0, 0, 0]])# 测量噪声协方差矩阵self.kf.R[2:,2:] *= 10.# 状态协方差矩阵,变化率不可观测所以设置一个较大值表示其较大的不确定性self.kf.P[4:,4:] *= 1000. self.kf.P *= 10.# 过程噪声协方差矩阵self.kf.Q[-1,-1] *= 0.01self.kf.Q[4:,4:] *= 0.01#状态向量前面四个值用bbox初始化,变化率设置为0self.kf.x[:4] = convert_bbox_to_z(bbox)
3.2.2. 滤波器生命周期管理

滤波器生命周期的管理是通过几个变量来实现的,KalmanBoxTracker创建的时候会初始化几个变量:

self.time_since_update = 0
self.hits = 0
self.hit_streak = 0

如果Tracker匹配成功,就会更新这几个变量的状态:

def update(self, bbox):self.time_since_update = 0self.hit_streak += 1

如果Tracker做了一次预测,同样会更新这几个变量的状态:

def predict(self):if (self.time_since_update > 0):self.hit_streak = 0self.time_since_update += 1

time_since_update表示距离上一次带观测值更新滤波器状态过去了多久,hit_streak表示Tracker连续匹配成功并更新的次数,一旦调用predict()函数对当前帧做了预测,time_since_update就加一,表示其已经对当前帧做过一次预测了。

在算法的处理类Sort中,会对Tracker的这几个变量做判断:

  1. 一个匹配成功的Tracker,需要判断其是否还在“试用期”,只有连续几帧都匹配成功才能使用它的跟踪信息:

if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):ret.append(np.concatenate((d, [trk.id+1])).reshape(1, -1))
  1. 如果下一帧Tracker未匹配成功,该Tracker就会被删除:

if (trk.time_since_update > self.max_age):self.trackers.pop(i)

4 总结

SORT目标跟踪算法仅使用卡尔曼滤波器和匈牙利算法解决帧与帧之间的状态预测和数据关联问题,跟踪的效果高度依赖于目标检测结果的好坏,算法整体设计非常简单,在速度和精度上取得较好的平衡,主要体现一个“快”字。当然,速度提升必然导致精度损失,SORT的缺点在于仅仅使用物体的边界框进行跟踪而忽略其表面特征,在复杂的场景中效果会比较差。另外,SORT没有目标重识别过程,一旦目标丢失就需要重新创建跟踪器去更新状态(一帧未匹配成功就需要重新跟踪),导致同一目标的ID频繁变换。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/24278.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

九大微服务监控工具详解

Prometheus Prometheus 是一个开源的系统监控、和报警工具包&#xff0c;Prometheus 被设计用来监控“微服务架构”。 主要解决&#xff1a; 监控和告警&#xff1a;Prometheus 可以对系统、和应用程序进行实时监控&#xff0c;并在出现问题时发送告警&#xff1b;数据收集和…

从0到1实现一个自己的大模型,实践中了解模型流程细节

前言 最近看了很多大模型&#xff0c;也使用了很多大模型。对于大模型理论似乎很了解&#xff0c;但是好像又缺点什么&#xff0c;思来想去决定自己动手实现一个 toy 级别的模型&#xff0c;在实践中加深对大语言模型的理解。 在这个系列的文章中&#xff0c;我将通过亲手实践…

问题:当频点数大于载波数时,() #学习方法#知识分享

问题&#xff1a;当频点数大于载波数时&#xff0c;&#xff08;&#xff09; A.基带跳频可以执行&#xff0c;混合跳频可以执行 B.基带跳频不可以执行&#xff0c;混合跳频可以执行 C.基带跳频可以执行&#xff0c;混合跳频不可以执行 D.基带跳频不可以执行&#xff0c;混…

用 Notepad++ 写 Java 程序

安装包 百度网盘 提取码&#xff1a;6666 安装步骤 双击安装包开始安装。 安装完成&#xff1a; 配置编码 用 NotePad 写 Java 程序时&#xff0c;需要设置编码。 在 设置&#xff0c;首选项&#xff0c;新建 中进行设置&#xff0c;可以对每一个新建的文件起作用。 Note…

IO进程线程(十)进程间通信 消息队列 共享内存 信号灯集

文章目录 一、IPC(Inter-Process Communication)进程间通信相关命令 &#xff1a;&#xff08;一&#xff09;ipcs --- 查看IPC对象&#xff08;二&#xff09;获取IPC键值&#xff08;三&#xff09;删除IPC对象的命令&#xff08;四&#xff09;获取IPC键值的函数1. 函数定义…

Maxkb玩转大语言模型

Maxkb玩转大语言模型 随着国外大语言模型llama3的发布&#xff0c;搭建本地个人免费“人工智能”变得越来越简单&#xff0c;今天博主分享使用Max搭建本地的个人聊天式对话及个人本地知识域的搭建。 1.安装Maxkb开源应用 github docker快速安装 docker run -d --namemaxkb -p 8…

FL Studio21.2.9中文破解版水果软件安装包附带激活码注册码

音乐制作软件&#xff0c;对很多人而言&#xff0c;是一个“高门槛”的存在。它既需要专业的音乐知识&#xff0c;也需要复杂的操作技巧。 「FL Studio 21中文版马丁版下载」&#xff0c;复制整段内容&#xff0c;打开最新版「夸克APP」即可获取链接&#xff1a; https://pan…

Dokcer 基础使用 (4) 网络管理

文章目录 Docker 网络管理需求Docker 网络架构认识Docker 常见网络类型1. bridge 网络2. host 网络3. container 网络4. none 网络5. overlay 网络 Docker 网路基础指令Docker 网络管理实操 其他相关链接 Docker 基础使用(0&#xff09;基础认识 Docker 基础使用(1&#xff09;…

git(其六)--总结

配置基础信息 //1.配置用户名和邮箱 git config --global user.name "带着引号写一个昵称" git config --global user.email "带着引号写一个邮箱"//2.建立一个git本地库 git init//3.查看本地内容 git status //可以看到那些处于待加入本地库的文件&a…

使用AutoGen框架进行多智能体协作:AI Agentic Design Patterns with AutoGen

AI Agentic Design Patterns with AutoGen 本文是学习https://www.deeplearning.ai/short-courses/ai-agentic-design-patterns-with-autogen/ 这门课的学习笔记。 What you’ll learn in this course In AI Agentic Design Patterns with AutoGen you’ll learn how to buil…

当C++的static遇上了继承

比如我们想要统计下当前类被实例化了多少次&#xff0c;我们通常会这么写 class A { public:A() { Count_; }~A() { Count_--; }int GetCount() { return Count_; }private:static int Count_; };class B { public:B() { Count_; }~B() { Count_--; }int GetCount() { return …

抢人!抢人!抢人! IT行业某岗位已经开始抢人了!

所谓抢滩鸿蒙&#xff0c;人才先行。鸿蒙系统火力全开后&#xff0c;抢人已成鸿蒙市场的主题词&#xff01; 智联招聘数据显示&#xff0c;春节后首周&#xff0c;鸿蒙相关职位数同比增长163%&#xff0c;是去年同期的2.6倍&#xff0c;2023年9-12月鸿蒙相关职位数同比增速为3…

前端开发常用的工具和软件,提高编程效率

目录 1. 文本编辑器与IDE (集成开发环境)2. 版本控制工具3. 构建工具与包管理器4. 前端框架与库5. 设计与原型工具6. 测试与调试工具7. 代码协作与项目管理8. 自动化部署与持续集成/持续部署(CI/CD)相关链接&#xff1a; 前端开发过程中使用的工具和软件种类繁多&#xff0c;可…

Python实现调用并执行Linux系统命令

&#x1f60e; 作者介绍&#xff1a;我是程序员洲洲&#xff0c;一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主。 &#x1f913; 同时欢迎大家关注其他专栏&#xff0c;我将分享Web前后端开发、人工智能、机器学习、深…

【Node】node的Events模块(事件模块)的介绍和使用

文章目录 简言EventsPassing arguments and this to listeners 向监听器传递参数Asynchronous vs. synchronous 异步和同步Handling events only once 只一次处理事件Error events 错误事件Capture rejections of promises 捕捉拒绝承诺的情况Class: EventEmitter 事件类Event:…

聊聊二叉堆、红黑树、时间轮在定时任务中的应用

定时任务作为常用的一种调度方式&#xff0c;在各大系统得到了广泛的应用。 笔者也曾写过两篇关于定时任务框架介绍的文章&#xff1a; 《介绍一下,spring cloud下的另一种定时任务解决方案》《四叉堆在GO中的应用-定时任务timer》 之前都是以如何使用为主&#xff0c;这次从…

Vue项目安装axios报错npm error code ERESOLVE npm error ERESOLVE could not resolve解决方法

在Vue项目中安装axios时报错 解决方法&#xff1a;在npm命令后面加--legacy-peer-deps 例如&#xff1a;npm install axios --save --legacy-peer-deps 因为别的需求我把node版本重装到了最新版&#xff08;不知道是不是这个原因&#xff09;&#xff0c;后来在项目中安装axi…

在推荐四款软件卸载工具,让流氓软件无处遁形

Revo Uninstaller Revo Uninstaller是一款电脑软件、浏览器插件卸载软件&#xff0c;目前已经有了17年的历史了。可以扫描所有window用户卸载软件后的残留物&#xff0c;并及时清理&#xff0c;避免占用电脑空间。 Revo Uninstaller可以通过命令行卸载软件&#xff0c;可以快速…

前端生成海报图技术选型与问题解决

作者&#xff1a;vivo 互联网大前端团队 - Tian Yuhan 本篇文章主要聚焦海报图分享这个形式&#xff0c;探讨纯前端在H5&小程序内&#xff0c;合成海报到下载到本地、分享至社交平台整个流程中可能遇到的问题&#xff0c;以及如何解决。 一、引言 绝大多数的电商平台都会…

30、matlab现代滤波:维纳滤波/LMS算法滤波/小波变换滤波

1、信号1和信号2的维纳滤波 实现代码 N 2000; %采样点数 Fs 2000; %采样频率 t 0:1 / Fs:1 - 1 / Fs; %时间序列 Signal1 sin(2*pi*20* t) sin(2*pi*40* t) sin(2*pi*60* t); Signal2[2*ones(1,50),zeros(1,50),-1*ones(1,100),zeros(1,50),-2*ones(1,50),zeros(1,50),1…