C语言数据结构(排序算法总结)

目录

算法类型

算法比较

稳定性描述

插入排序

选择排序

冒泡排序

希尔排序

堆排序

快速排序

霍尔排序(递归)

挖坑法(递归)

双指针(递归)

快排(非递归)

归并排序

计数排序

总结(速度比较)


算法类型

插入排序,选择排序,冒泡排序,希尔排序,堆排序,快速排序(递归霍尔,挖坑,双指针,非递归),归并排序(递归,非递归),计数排序

算法比较

稳定性描述

数组相同大小元素顺序是否发生变化

插入排序

// 插入排序
void InsertSort(int* a, int n) {int i,tmp,j;for (i = 0; i < n - 1; i++) {tmp = a[i + 1];for (j = i; j >= 0; j--) {if (a[j] > tmp)a[j + 1] = a[j];elsebreak;}a[j + 1] = tmp;}
}

特性:

越有序越快,算法稳定

时间复杂度:

O(N^2)

空间复杂度:

O(1)

选择排序

// 选择排序
void SelectSort(int* a, int n) {int i, j, max, min,mid=n/2;for (i = 0; i < mid; i++) {max = min = i;for (j = i; j < n - i; j++) {if (a[j] > a[max])max = j;if (a[j] < a[min])min = j;}swap(&a[i], &a[min]);if (max == i)max = min;swap(&a[n - i - 1], &a[max]);}
}

特性:

效率比较稳定,算法不稳定(看自己写的算法取值)

时间复杂度:

O(N^2)

空间复杂度:

O(1)

冒泡排序

// 冒泡排序
void BubbleSort(int* a, int n) {int i, j;for (i = 0; i < n - 1; i++) {for (j = 0; j < n - i - 1; j++) {if (a[j] > a[j + 1])swap(&a[j], &a[j + 1]);}}
}

特性:

算法稳定,效率一般,有教学意义

时间复杂度:
O(N^2)

空间复杂度:

O(1)

希尔排序

void ShellSort(int* a, int n) {int i, j, gap=n, tmp,k;while (gap > 1) {gap = gap / 3 + 1;for (i = 0; i < gap; i++) {for (k = i; k < n - gap; k += gap) {tmp = a[k + gap];for (j = k; j >= 0; j -= gap) {if (a[j] > tmp)a[j + gap] = a[j];elsebreak;}a[j + gap] = tmp;}}}
}

特性:

算法非常不稳定,无法预测

是插入排序的升级版,针对无序情况

时间复杂度:
O(N^1.3)

空间复杂度:

O(1)

堆排序

// 堆排序
void AdjustDown(int* a, int n, int root) {//大堆int parent=root,child=parent*2+1;while (child < n) {if (child + 1 < n && a[child + 1] > a[child])child++;if (a[child] > a[parent])swap(&a[child], &a[parent]);elsebreak;parent = child;child = child * 2 + 1;}
}
void HeapSort(int* a, int n) {int i;for (i = (n - 1 - 1) / 2; i >= 0; i--)AdjustDown(a, n, i);for (i = n - 1; i > 0; i--) {swap(&a[i], &a[0]);AdjustDown(a, i, 0);}
}

特性:

排序时间比较稳定,算法不稳定

时间复杂度:

向上整理成堆:O(NlogN)

向下整理成堆堆:O(N)

堆排序:O(NlogN)

空间复杂度:

O(1)

快速排序

特性:

算法不稳定,越有序越慢

时间复杂度:

O(NlogN)

空间复杂度:

O(1)

优化:

越有序越慢,我们可以找到一个值不是最大也不是最小,与首元素进行交换提升效率

在元素个数比较少时使用插入排序

霍尔排序(递归)

// 快速排序递归实现
// 快速排序hoare版本
void PartSort1(int* a, int left, int right) {if (left >= right)return;int begin = left, end = right,key=left;while (begin < end) {while (begin<end&&a[end] >= a[key])end--;while (begin<end&&a[begin] <= a[key])begin++;swap(&a[begin], &a[end]);}swap(&a[key], &a[end]);key = begin;PartSort1(a, left, key - 1);PartSort1(a, key + 1, right);
}

挖坑法(递归)

// 快速排序挖坑法
void PartSort2(int* a, int left, int right) {if (left >= right)return;int begin = left, end = right, tmp = a[left];while (begin < end) {while (begin<end&&a[end] >= tmp)end--;a[begin] = a[end];tmp = a[end];while (begin<end&&a[begin] <= tmp)begin++;a[end] = a[begin];tmp = a[end];}a[end] = tmp;PartSort2(a, left, begin - 1);PartSort2(a, end + 1, right);
}

双指针(递归)

void QuickSort(int* a, int left, int right) {if (left >= right)return;int cur = left + 1, pre = left;while (cur <= right) {if (a[cur] < a[left] && ++pre < cur)swap(&a[cur], &a[pre]);cur++;}swap(&a[left], &a[pre]);QuickSort(a, pre + 1, right);QuickSort(a, left, pre - 1);
}

快排(非递归)

选择一种快排方法,返回修正位置key

int PartSort3(int* a, int left, int right) {if (left >= right)return -1;int cur = left + 1, pre = left;while (cur <= right) {if (a[cur] < a[left] && ++pre < cur)swap(&a[cur], &a[pre]);cur++;}swap(&a[left], &a[pre]);return pre;
}
// 快速排序 非递归实现
void QuickSortNonR(int* a, int left, int right) {Stack stack;StackInit(&stack);StackPush(&stack, right);StackPush(&stack, left);while (!StackEmpty(&stack)) {int begin = StackTop(&stack);StackPop(&stack);int end = StackTop(&stack);StackPop(&stack);int key = PartSort3(a, begin, end);if (key - 1 > begin) {StackPush(&stack, key-1);StackPush(&stack, begin);}if (key + 1 < end) {StackPush(&stack, end);StackPush(&stack, key+1);}}
}

归并排序

特性:

稳定,时间复杂度也稳定

时间复杂度:

O(NlogN)

空间复杂度:

O(N)

递归

void _merge(int* a, int* tmp, int left, int right) {if (left >= right)return;int mid = (left + right) / 2;_merge(a, tmp,left, mid);_merge(a, tmp, mid + 1, right);int begin1 = left, begin2 = mid + 1,i=left;while (begin1 <= mid && begin2 <= right) {if (a[begin1] > a[begin2])tmp[i++] = a[begin2++];elsetmp[i++] = a[begin1++];}while(begin1 <= mid)tmp[i++] = a[begin1++];while (begin2 <= right)tmp[i++] = a[begin2++];memcpy(a + left, tmp + left, sizeof(int) * (right - left + 1));
}
// 归并排序递归实现
void MergeSort(int* a, int n) {int* tmp = (int*)malloc(sizeof(int) * n);_merge(a, tmp, 0, n - 1);free(tmp);tmp = NULL;
}

非递归

// 归并排序非递归实现
void MergeSortNonR(int* a, int n) {int gap = 1,i,begin,*tmp=(int*)malloc(sizeof(int)*n);while (gap < n) {for (begin = 0; begin < n - gap; begin+=2*gap) {int begin1 = begin,end1=begin+gap-1,begin2=begin+gap,end2=begin2+gap-1;if (begin2 >= n)break;if (end2 >= n)end2 = n - 1;i = begin;while (begin1 <= end1 && begin2 <= end2) {if (a[begin1] < a[begin2])tmp[i++] = a[begin1++];elsetmp[i++] = a[begin2++];}while (begin1 <= end1)tmp[i++] = a[begin1++];while (begin2 <= end2)tmp[i++] = a[begin2++];}memcpy(a, tmp, sizeof(int) * n);gap *= 2;}
}

计数排序

// 计数排序
void CountSort(int* a, int n) {int max, min, i,j=0;max = min = a[0];for (i = 1; i < n; i++) {if (a[i] > max)max = a[i];if (a[i] < min)min = a[i];}int* arr = (int*)calloc(max - min + 1, sizeof(int));for (i = 0; i < n; i++)arr[a[i] - min]++;for (i = 0; i < max - min + 1; i++) {while (arr[i]--)a[j++] = min+i;}
}

特性:

空间复杂度仅与最大最小数有关,只可用于排列数

数越均衡越快

时间复杂度:

O(N)//均衡的话

总结(速度比较)

先比较插入,选择,冒泡排序,放置1w个随机数

比较剩下几个排序,每个放入1000w个数

由于伪随机数非常均衡,因此相对来说计数排序效率相对来说非常高

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/24206.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android Lottie 体积优化实践:从 6.4 MB 降到 530 KB

一、说明 产品提出需求&#xff1a;用户有 8 个等级&#xff0c;每个等级对应一个奖牌动画。 按照常用的实现方式&#xff1a; 设计提供 8 个 lottie 动画&#xff08;8 个 json 文件&#xff09;。研发将 json 文件打包进入 APK 中。根据不同等级播放指定的动画。 每一个 …

Unity ShaderGraph 扭曲

需要注意的是&#xff1a; HDRP ShaderGraph中 你不能扭曲UI&#xff0c;所以假如你要扭曲视频&#xff0c;请把视频在材质上渲染 播放&#xff0c;这样就可以扭曲视频了喔&#xff0c; ShaderGraph扭曲

C++STL---stack queue模拟实现

前言 对于这两个容器适配器的模拟实现非常简单&#xff0c;因为stack和queue只是对其他容器的接口进行了包装&#xff0c;在STL中&#xff0c;若我们不指明用哪种容器作为底层实现&#xff0c;栈和队列都默认是又deque作为底层实现的。 也就是说&#xff0c;stack和queue不管是…

数据挖掘实战-基于Catboost算法的艾滋病数据可视化与建模分析

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

FANUC机器人SRVO-348 DCS MCC关闭报警处理方法总结

FANUC机器人SRVO-348 DCS MCC关闭报警处理方法总结 如下图所示,由于操作人员在操机时误打开了安全门,导致机器人紧急制动停止,示教器上显示: SRV0-348 DCS MCC关闭报警0,1, 如下图所示,查看手册中关于SRVO-348报警的具体内容: 原因分析:给机器人主电源上电的接触器在紧…

《机器学习特征提取》

书籍&#xff1a;Building Feature Extraction with Machine Learning: Geospatial Applications 作者&#xff1a;Bharath.H. Aithal&#xff0c;Prakash P.S. 出版&#xff1a;CRC Press 书籍下载-《机器学习特征提取》这是一本面向专业人士和研究生的实用指南&#xff0c…

SSM框架整合,内嵌Tomcat。基于注解的方式集成

介绍&#xff1a; SSM相信大家都不陌生&#xff0c;在spring boot出现之前&#xff0c;SSM一直是Java在web开发中的老大哥。现在虽说有了spring boot能自动整合第三方框架了&#xff0c;但是现在市面上任然有很多老项目是基于SSM技术的。因此&#xff0c;能熟练掌握SSM进行开发…

队列的讲解与实现

这里写目录标题 一、队列的概念及结构二、队列的实现(使用VS2022的C语言)1.初始化、销毁2.入队、出队3.返回队头元素、返回队尾元素、判空、返回有效元素个数 三、完整 Queue.c 源代码 一、队列的概念及结构 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端…

【Linux】进程(8):Linux真正是如何调度的

大家好&#xff0c;我是苏貝&#xff0c;本篇博客带大家了解Linux进程&#xff08;8&#xff09;&#xff1a;Linux真正是如何调度的&#xff0c;如果你觉得我写的还不错的话&#xff0c;可以给我一个赞&#x1f44d;吗&#xff0c;感谢❤️ 目录 之前我们讲过&#xff0c;在大…

代码随想录算法训练营第四十九天 | 139.单词拆分、多重背包、背包问题总结

139.单词拆分 视频讲解&#xff1a; 动态规划之完全背包&#xff0c;你的背包如何装满&#xff1f;| LeetCode&#xff1a;139.单词拆分_哔哩哔哩_bilibili 代码随想录 解题思路 1.dp[i] 字符串的长度为i&#xff0c;dp[i]是否可以被组成 2.递推公式 if( [j,i] && d…

硬件IIC和软件IIC的比较

&#xff08;一&#xff09;硬件IIC 硬件IIC是由STM32内部的硬件模块实现的&#xff0c;使用CPU的时钟信号来控制数据传输和时序&#xff0c;通信速度较快&#xff0c;可以达到几十MHz的速度。硬件IIC的实现相对简单&#xff0c;无需编写复杂的代码&#xff0c;因此在实现IIC通…

如何理解与学习数学分析——第二部分——数学分析中的基本概念——第5章——序列

第2 部分&#xff1a;数学分析中的基本概念 (Concepts in Analysis) 5. 序列(Sequences) 本章介绍了序列属性&#xff0c;例如单调性、有界性和收敛性&#xff0c;使用图表和示例来解释这些属性&#xff0c;并演示如何在各种证明中使用它们的定义。讨论了趋于无穷大的序列出…

centos官方yum源不可用 解决方案(随手记)

昨天用yum安装软件的时候&#xff0c;就报错了 [rootop01 ~]# yum install -y net-tools CentOS Stream 8 - AppStream 73 B/s | 38 B 00:00 Error: Failed to download metadata for repo appstream: Cannot prepare internal mirrorlis…

创新指南 | 5个行之有效的初创企业增长策略

本文探讨了五种初创企业实现快速增长的有效策略&#xff1a;利用网络效应通过激励和资本化用户增长&#xff1b;通过持续提供高质量内容建立信任和权威的内容营销&#xff1b;利用简单有效的推荐计划扩展用户群&#xff1b;采用敏捷开发方法快速适应市场变化和客户反馈&#xf…

[消息队列 Kafka] Kafka 架构组件及其特性(二)Producer原理

这边整理下Kafka三大主要组件Producer原理。 目录 一、Producer发送消息源码流程 二、ACK应答机制和ISR机制 1&#xff09;ACK应答机制 2&#xff09;ISR机制 三、消息的幂等性 四、Kafka生产者事务 一、Producer发送消息源码流程 Producer发送消息流程如上图。主要是用…

国自然基金的检索

&#xff08;1&#xff09;网址 跳转国自然基金网址&#xff1a;https://www.nsfc.gov.cn/ &#xff08;2&#xff09;查询入口 &#xff08;3&#xff09;进行查询

【LeetCode 滑动窗口】LC_3_无重复字符的最长子串

文章目录 1. 无重复字符的最长子串 1. 无重复字符的最长子串 题目链接&#x1f517; &#x1f34e;题目思路&#xff1a;&#x1f427;① 滑动窗口的思想&#xff1b;&#x1f427;② 用什么来维护窗口呢 &#xff1f; 用 双指针 和 unordered_set来维护&#xff0c;为什么呢…

Git介绍及应用

1.简介 Git是一个分布式版本控制器&#xff0c;通常用来对软件开发过程中的源代码文件进行管理。通过Git仓库来存储和管理这些文件&#xff0c;Git仓库分为两种&#xff1a; 本地仓库:开发人员自己电脑上的Git仓库远程仓库:远程服务器上的Git仓库 2.执行流程 3.Git代码托管服务…

【TB作品】MSP430F5529 单片机,温度控制系统,DS18B20,使用MSP430实现的智能温度控制系统

作品功能 这个智能温度控制系统基于MSP430单片机设计&#xff0c;能够实时监测环境温度并根据预设的温度报警值自动调节风扇和加热片的工作状态。主要功能包括&#xff1a; 实时显示当前温度。通过OLED屏幕显示温度报警值。通过按键设置温度报警值。实际温度超过报警值时&…

【96】write combine机制介绍

前言 这篇文章主要介绍了write combine的机制 一、write combine的试验 1.系统配置 &#xff08;1&#xff09;、CPU&#xff1a;11th Gen Intel(R) Core(TM) i7-11700 2.50GHz &#xff08;2&#xff09;、GPU&#xff1a;XX &#xff08;3&#xff09;、link status&am…