人工智能时代的关键技术:深入探索向量数据库及其在AI中的应用

文章目录

    • 1. 理解向量数据库:二维模型示例
    • 2. 向量数据库中的数据存储与检索
    • 3. 向量数据库如何工作?
    • 4. 向量数据库如何知道哪些向量相似?

在人工智能技术日益成熟的当下,向量数据库作为处理和检索高维数据的关键工具,对于各种AI应用至关重要。本文将详细介绍向量数据库的工作原理、技术实现以及其在现代AI应用中的关键作用,同时通过实例展示如何有效实现和利用这种技术。

1. 理解向量数据库:二维模型示例

向量数据库的核心功能在于它能够处理和索引复杂的高维数据。为了简化这一概念,让我们通过一个基于衣服属性的二维模型来解释向量数据库如何工作。

在这个模型中,设想一个网格,它在一个维度上表示衣服的颜色(如棕色、黑色、白色),在另一个维度上表示衣服的大小(如小、中、大)。在这个网格上,每一个点都代表一件衣服,其在网格中的位置反映了这件衣服的颜色和大小属性。

在这里插入图片描述

例如:

  • 图片A对应一件中等大小的棕色衣服,位于网格的“中等-棕色”区域。
  • 图片B对应一件小号的黑色衣服,位于“小-黑色”区域。
  • 图片C是一件大号的白色衣服,位于“大-白色”区域。

虽然真实世界中的向量数据库会处理比这个例子更高维度的数据,但通过这个二维视角,我们可以更容易地理解它的基本工作原理。向量数据库利用这样的维度来快速定位和检索数据,从而高效地找到与用户查询相匹配的项。

2. 向量数据库中的数据存储与检索

向量数据库的强大功能在于其能够将复杂的数据对象转换成多维空间中的点,即向量嵌入。每个数据对象——无论是文本、图片还是音频——都可以被编码为一个包含多个数值的向量,这个向量捕捉了对象的关键特征。

在这里插入图片描述

想象一下在手机上听一首歌。这首歌曲通过音频模型被转换为一系列的音频向量嵌入,这些嵌入像是一串特殊的代码,它们不仅代表了歌曲的旋律、节奏和流派等音乐特征,而且在多维的向量空间中,相似歌曲的向量彼此更为接近。

在向量数据库中,这些音频向量嵌入的存储方式使得搜索变得极为高效。当查询一个与喜欢的曲目相似的歌曲时,向量数据库通过计算距离,快速定位那些在向量空间中与查询向量邻近的点,也就是那些特征相似的歌曲。

通过这种方式,向量数据库在维护数据的同时,也优化了搜索和检索过程,为用户提供快速且相关的结果。这使得向量数据库成为了人工智能和机器学习应用中不可或缺的组成部分,它可以广泛应用于推荐系统、搜索引擎和数据分析工具。

3. 向量数据库如何工作?

下面展示了一个处理用户查询并返回结果的过程,也包含了向量数据库的工作流程:

在这里插入图片描述

  1. 内容:代表了用户想要查询的信息源,比如文本、图片或音频。
  2. 查询:用户通过应用程序界面输入他们的搜索请求。
  3. 嵌入模型:这个模型负责将内容和查询转换成向量嵌入,这是一系列能代表原始信息的数字。
  4. 向量嵌入:查询和内容转换后的结果,是可以被计算机处理的数值形式,例如一组数字列表。
  5. 向量数据库:一个专门存储和处理向量嵌入的数据库。它将新的查询嵌入与数据库中已有的嵌入进行比较。
  6. 查询结果:根据向量嵌入之间的相似性度量,数据库找到并返回与用户查询最为相似或相关的结果。

这个过程反映了向量数据库在现代搜索和推荐系统中的实际应用,它能够处理和检索大量复杂的数据,并以高效的方式提供精确的结果。

4. 向量数据库如何知道哪些向量相似?

向量数据库通过计算向量之间的相似性度量来识别相似的向量。余弦相似度是一种常用的度量方法,它评估两个向量在方向上的相似程度,而不是它们在空间中的距离。

余弦相似度通过测量两个向量之间的夹角的余弦值来计算它们的相似性。它的值范围从-1(完全不相似)到1(完全相似)。当两个向量的方向完全一致时,余弦相似度为1;当两个向量完全相反时,余弦相似度为-1;当两者正交,即不相关时,余弦相似度为0。

在搜索引擎的上下文中,余弦相似度可以用来将用户的查询向量与数据库中存储的文档或对象的向量进行比较。通过计算查询向量与每个文档向量的余弦相似度,搜索引擎能够确定哪些文档与用户查询最为相关。

这个过程通常涉及以下步骤:

  1. 查询处理:用户输入的搜索词被转换成一个向量(查询向量)。
  2. 余弦相似度计算:查询向量与数据库中每个文档的向量进行比较,计算余弦相似度得分。
  3. 排序:文档根据它们的相似度得分进行排序。
  4. 结果展示:最相似的文档(即得分最高的文档)被展示给用户作为搜索结果。

确实,像谷歌这样的搜索引擎在确定搜索结果的相关性时会使用更加复杂的算法。除了余弦相似度,搜索引擎还会考虑页面权重(如PageRank)、用户个人化数据(如搜索历史和位置)、页面的实时性以及其他多种因素,以确保提供最准确、最相关的搜索结果。这些复杂的算法是搜索引擎优化(SEO)和搜索引擎营销(SEM)策略的关键组成部分。


推荐: 数据库
参考:Vector Databases: A Beginner’s Guide!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/2374.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【治理与监管题】

https://www.pcisecuritystandards.org/ https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-88r1.pdf 介绍 网络安全是一个快速发展的环境,恶意行为者不遗余力地利用高度敏感系统中的漏洞,通常旨在造成敏感企业数据的严重破坏、破坏和…

Dropout Feature Ranking for Deep Learning Models

摘要 深度神经网络( deep neural networks,DNNs )在多个领域取得了最新的研究成果。不幸的是,DNNs因其不可解释性而臭名昭著,从而限制了其在生物和医疗保健等假说驱动领域的适用性。此外,在资源受限的环境下,设计依赖…

StorCli工具学习记录

StorCli工具学习记录 StorCLI(Storage Command Line Interface)是一款强大的命令行管理工具,用于管理和配置存储控制器。这一工具主要适用于Broadcom(原LSI)及Intel RAID控制器。 下面将详细介绍StorCLI的安装、特点、…

数据结构 - 顺序表实现通讯录

test.c文件 #define _CRT_SECURE_NO_WARNINGS 1#include "Contact.h" int main() {Con myContacts;ConInit(&myContacts);int choice;int index;char targetName[100];PerInfo contact; // 创建一个新的联系人信息实例while (1) {printf("\n--- 通讯录管理…

Linux下的UDEV机制/守护进程

一. Udev机制概念引入 ( 需要在 etc/udev/rules.d/ 下创建设备的相关规则,不然有可能udev机制生成的设备文件不具备可读可写的权限,adb无法成功通过该设备文件访问设备 ) a. 创建文件夹 sudo vim Xiaomi-audroid.rules b. 添加规则 …

景区ar导览实景导航小程序系统开发源码搭建

开发景区AR导览实景导航小程序系统需要以下步骤: 1. 确定需求和功能:根据景区AR导览实景导航的需求和功能,确定需要开发哪些功能模块,如AR实景导航、语音讲解、景点介绍、路线规划等。 2. 确定技术方案:选择适合的技…

在vscode上面进行分支merge的记录

前言:在我们的项目中,有两个分支:master和liutielong。现在要将liutielong分支的改动merge到master分支中。 如果master分支已经更改了,所以要先pull(这是在git bash里面的命令)。 git pull origin master…

5分钟——快速搭建后端springboot项目

5分钟——快速搭建后端springboot项目 1. idea新建工程2. 构建pom.xml文件3. 构建application.yml配置文件4. 构建springboot启动类5. 补充增删改查代码6. 运行代码 1. idea新建工程 点击右上角新建一个代码工程 别的地方不太一样也不用太担心,先创建一个工程就好…

学习配置文件

1.yml的语法格式问题: 2.配置文件获取数据: Value方式: Environment: 获取自定义对象的方式: 设置get和set方法,还有toString方法。 3. 日志配置: logo的配置: 日志插件&#xff…

汽车纵染压制专用液压机比例阀放大器

汽车纵染压制专用液压机比例阀放大器是一种专门用于汽车纵梁拉伸工艺的设备,它也可以用于其他金属薄板的压制成型及校正工艺。该类型的液压机通常具备独立的动力机构和电气系统,采用PLC技术进行控制,以确保操作的准确性和稳定性。除了纵梁拉伸…

【iOS】分类,扩展与关联对象

文章目录 前言一、分类实现原理二、分类加载流程三、扩展四、类别与类扩展的区别五、关联对象动态添加取值移除关联对象应用 总结 前言 上一篇章我们探究了类与对象的底层,这一篇我们探究一下分类,扩展与关联对象 一、分类实现原理 首先我们知道扩展是…

Rust :快速了解 VecDeque 双向队列

VecDeque是Rust标准库中的一个双端队列(double-ended queue)实现,它提供了在队列两端进行高效插入和删除操作的能力。双端队列是一种具有队列和栈的性质的数据结构,元素可以从两端弹出,其限定插入和删除操作在表的两端…

CentOS-7安装grafana

一、通用设置(分别在4台虚拟机设置) 1、配置主机名 hostnamectl set-hostname --static 主机名2、修改hosts文件 vim /etc/hosts 输入: 192.168.15.129 master 192.168.15.133 node1 192.168.15.134 node2 192.168.15.136 node33、 保持服…

GaussianEditor:快速可控的3D编辑与高斯飞溅

GaussianEditor: Swift and Controllable 3D Editing with Gaussian Splatting GaussianEditor:快速可控的3D编辑与高斯飞溅 Yiwen Chen*​1,2   Zilong Chen*​3,5   Chi Zhang2   Feng Wang3   Xiaofeng Yang2 陈怡雯 *​1,2 陈子龙 *​3,5 张驰 2 王峰 3 杨晓…

MySQL学习笔记7——视图和存储过程

视图和存储过程 一、视图1、视图的作用2、如何操作视图和视图中的数据3、视图的优缺点 二、存储过程1、如何创建存储过程2、调用存储过程3、修改和删除存储过程 一、视图 1、视图的作用 视图是一种虚拟表,我们可以把一段查询语句作为视图存储在数据库中&#xff0…

Cocos Creator 场景树与组件实例查找详解

前言 Cocos Creator 是一款由 Cocos-BCX 团队开发的一款基于 JavaScript 的游戏开发引擎,它提供了一套完整的游戏开发工具和资源,方便开发者快速构建游戏。在 Cocos Creator 中,场景树和组件实例的查找是非常重要的,它们可以帮助开…

.NET Core 中的 ORM 框架对比

在 .NET Core 中选择正确的对象关系映射 (ORM) 工具可能是开发生命周期中的关键决策。所选的 ORM 会影响应用程序的性能、可维护性和可伸缩性。在本文中,我们将深入分析三个突出的 ORM 选择:Entity Framework Core、Dapper 和 NHi…

算法设计与优化——向量中数据唯一化

0.概述 很多应用中,在进一步处理之前都要求数据元素互异。以网络搜索引擎为例,多个计算节点各自获得的局部搜索结果,需首先剔除其中重复的项目,方可合并为一份完整的报告。类似地,所谓向量的唯一化处理,就…

liqo学习及安装,k8s,kubernetes多集群互联

先按照官方的教程在虚拟机安装学习 在开始以下教程之前,您应该确保您的系统上安装了以下软件: Docker,容器运行时。Kubectl,Kubernetes 的命令行工具。 curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.…

本地有一个face.txt文档,里面是50条url图片链接。怎么通过python做数据增强,还额外再生成200张!!!???

为了完成这个作业,我们需要编写一个Python脚本,该脚本将读取face.txt文件中的图片链接,并对这些链接进行处理,生成额外的图片链接作为数据增强。请注意,由于我们实际上没有真正的图像数据,而是只有URL链接&…