数据分析必备:一步步教你如何用Pandas做数据分析(17)

1、Pandas 连接

Pandas 连接的操作实例
Pandas具有与SQL等关系数据库非常相似的功能齐全的高性能内存中连接操作。
Pandas提供单个功能merge作为DataFrame对象之间所有标准数据库联接操作的入口点

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,left_index=False, right_index=False, sort=True)

在这里,我们使用了以下参数:
left − 一个DataFrame对象。
right − 另一个DataFrame对象。
on − 列(名)加入上。必须在左右DataFrame对象中都找到。
left_on − 左侧DataFrame中的列用作键。可以是列名,也可以是长度等于DataFrame长度的数组。
right_on − 右侧DataFrame中的列用作键。可以是列名,也可以是长度等于DataFrame长度的数组。
left_index − 如果为True,则使用左侧DataFrame的索引(行标签)作为其连接键。如果DataFrame具有MultiIndex(分层),则级别数必须与右侧DataFrame中的连接键数匹配。
right_index − 相同的使用作为left_index为正确的数据帧。
how − “左”,“右”,“外”,“内”之一。默认为内部。每种方法已在下面描述。
sort − 排序的结果数据框中加入字典顺序按键。默认情况下为True,在许多情况下,设置为False将大大提高性能。
现在让我们创建两个不同的DataFrame并对其执行合并操作。

import pandas as pd
left = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print(left)
print(right)

运行结果

   id    Name subject_id
0   1    Alex       sub1
1   2     Amy       sub2
2   3   Allen       sub4
3   4   Alice       sub6
4   5  Ayoung       sub5id   Name subject_id
0   1  Billy       sub2
1   2  Brian       sub4
2   3   Bran       sub3
3   4  Bryce       sub6
4   5  Betty       sub5

1.1、在一个键上合并两个数据框

import pandas as pd
left = pd.DataFrame({'id': [1, 2, 3, 4, 5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id': ['sub1', 'sub2', 'sub4', 'sub6', 'sub5']})
right = pd.DataFrame({'id': [1, 2, 3, 4, 5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id': ['sub2', 'sub4', 'sub3', 'sub6', 'sub5']})
print(pd.merge(left, right, on='id'))

运行结果

   id  Name_x subject_id_x Name_y subject_id_y
0   1    Alex         sub1  Billy         sub2
1   2     Amy         sub2  Brian         sub4
2   3   Allen         sub4   Bran         sub3
3   4   Alice         sub6  Bryce         sub6
4   5  Ayoung         sub5  Betty         sub5

1.2、在多个键上合并两个数据框

import pandas as pd
left = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print(pd.merge(left,right,on=['id','subject_id']))

运行结果

   id  Name_x subject_id Name_y
0   4   Alice       sub6  Bryce
1   5  Ayoung       sub5  Betty

1.3、合并使用“how”参数

合并的how参数指定如何确定要在结果表中包括哪些键。如果左侧或右侧表中均未出现组合键,则联接表中的值为NA。
这里的一个总结如何选择和他们的SQL等价的名字:
在这里插入图片描述

1.4、左连接

import pandas as pd
left = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print(pd.merge(left, right, on='subject_id', how='left'))

运行结果

 id_x  Name_x subject_id  id_y Name_y
0     1    Alex       sub1   NaN    NaN
1     2     Amy       sub2   1.0  Billy
2     3   Allen       sub4   2.0  Brian
3     4   Alice       sub6   4.0  Bryce
4     5  Ayoung       sub5   5.0  Betty

1.5、右连接

import pandas as pd
left = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print(pd.merge(left, right, on='subject_id', how='right'))

运行结果

  id_x  Name_x subject_id  id_y Name_y
0   2.0     Amy       sub2     1  Billy
1   3.0   Allen       sub4     2  Brian
2   NaN     NaN       sub3     3   Bran
3   4.0   Alice       sub6     4  Bryce
4   5.0  Ayoung       sub5     5  Betty

1.6、外连接

import pandas as pdleft = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id':['sub1','sub2','sub4','sub6','sub5']})right = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id':['sub2','sub4','sub3','sub6','sub5']})print(pd.merge(left, right, how='outer', on='subject_id'))

运行结果

 id_x  Name_x subject_id  id_y Name_y
0   1.0    Alex       sub1   NaN    NaN
1   2.0     Amy       sub2   1.0  Billy
2   NaN     NaN       sub3   3.0   Bran
3   3.0   Allen       sub4   2.0  Brian
4   5.0  Ayoung       sub5   5.0  Betty
5   4.0   Alice       sub6   4.0  Bryce

1.7、内连接

连接将在索引上执行。联接操作接受调用它的对象。因此,a.join(b)不等于b.join(a)。

import pandas as pdleft = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],'subject_id':['sub1','sub2','sub4','sub6','sub5']})right = pd.DataFrame({'id':[1,2,3,4,5],'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],'subject_id':['sub2','sub4','sub3','sub6','sub5']})print(pd.merge(left, right, on='subject_id', how='inner'))

运行结果

  id_x  Name_x subject_id  id_y Name_y
0     2     Amy       sub2     1  Billy
1     3   Allen       sub4     2  Brian
2     4   Alice       sub6     4  Bryce
3     5  Ayoung       sub5     5  Betty

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/22747.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

新手必看!现货伦敦金新手容易犯的两个错

对很多刚进入现货伦敦金市场的朋友来说,炒伦敦金是十分令人兴奋的,但兴奋归兴奋,我们还是要注意,由于现货伦敦金投资者过分的热情,很容易让自己跌入一些陷阱,犯下一些错误,下面我们就来介绍两个…

智能楼宇安防3D数据可视化平台满足日益增长的安防需求

在当今社会,安全是每个人和企业最为关心的问题。为满足日益增长的安防需求,3D可视化公司深圳华锐视点隆重推出安防平台3D可视化管理系统,以先进的三维技术为您的安全保驾护航。 安防平台3D可视化管理系统通过创新的三维可视化技术&#xff0c…

纷享销客BI智能分析平台技术架构介绍

纷享销客BI智能分析平台致力于降低用户上手门槛,无缝继承纷享销客PaaS平台的对象关系模型和权限体系,让使用纷享CRM的营销人员、销售人员、服务人员等各类角色人员都能够将分析场景与业务场景相融合,将数据思维融合到自己的日常工作、团队工作…

SpringCloud-面试篇(二十三)

(1)SpringCloud常见组件有那些 有无数微服务需要相互调用:可以用远程调用组件OpenFeign组件,也可以用Dobble 这么多微服务相互调用怎么管理:就用到注册中心组件Nacos,Eureka 所有的服务去找注册中心做注…

TCP协议与UDP协议区别

举个列子: 三次握手:为了解决网络信道不可靠的问题;防止客户端向服务端发送两次数据,客户端一直处于接收的状态。 四次挥手是一样的。当客户端提出关闭请求,服务端处于关闭等待状态,此时客户端可以发送数据…

PMP考试难吗?考试通过率有多少?

我们通常以考试的通过率来评判一个考试的难易程度。通常通过率达到60%以上,这个考试就不太难;达到80% ,这个考试就是不难的。 PMP考试难吗? 不少想要考PMP的小伙伴都会有这样的疑惑,首先以PMP的含金量来说&#xff0…

产品推荐 | 基于Lattice USB3-GbE VIP IO技术赋能视频接口开发板

1、产品概述 支持视频接口平台 (VIP) – 为莱迪思VIP提供USB 3.0 和千兆以太网网络互连 灵活的快速原型设计和开发– 两个标准的高速连接器实现嵌入式视觉原型系统的简便快速硬件配置 可靠、经验证的即时使用设计– 莱迪思演示设计通过USB 3.0和工业千兆以太网接口实现快速视…

Linux C语言: 数据类型

一、 为什么要引入数据类型 • 计算机中每个字节都有一个地址(类似门牌号) • CPU通过 地址 来访问这个字节的空间 0x20001103 1 0 0 1 0 0 1 1 0x20001102 1 1 1 0 1 1 1 0 0x20001101 1 1 1 1 0 1 0 1 0x20001100 0 …

accelerate 笔记:梯度同步的时间效率

1 介绍 PyTorch 的分布式模块通过在系统中所有GPU之间进行来回通信来操作。 这种通信需要时间,并且确保所有进程了解彼此的状态在使用ddp模块时会在特定的触发点发生 这些触发点被添加到PyTorch模型中,特别是它们的 forward() 和 backward() 方法中当通…

2024-06-05 Android app jni里面c语言函数申请的局部变量数组过大会导致程序崩溃的问题分析

一、下面是一个app jni里面一个函数,函数里面定义一个数组,实际运行的时候发现数组过大的时候会导致app崩溃。 JNIEXPORT jint JNICALL JNI_FUNCTION(native_1getcapture_1data)(JNIEnv *env, jobject obj,jbyteArray des_data,jbyteArray src_data,jin…

Linux 多线程 生产者消费者 问题

在 Linux 系统中,生产者和消费者问题是一个经典的多线程同步问题,用于描述如何在多线程环境中协调多个线程对共享资源的访问。这个问题通常涉及两个类型的线程:生产者线程和消费者线程。生产者线程负责生成数据并将其放入缓冲区,而…

3D开发工具HOOPS助力PLM/PDM系统创新,高效实现复杂数据精细处理、3D模型交互可视化!

在现代制造和工程领域,PLM(产品生命周期管理)和PDM(产品数据管理)已成为企业优化流程和提升竞争力的关键工具。 随着技术的飞速发展,PLM和PDM应用程序需要更先进的工具来处理复杂的CAD数据、实现高效的3D可…

九泰智库-注册讲堂 | 浙江省eRPS系统上线后提交文件要求

浙械eRPS系统(https://ylqx.certca.cn/ylqxonline/)已正式上线启用。 在过渡期内,注册申请人需要同时进行线上医疗器械注册电子申报和提交纸质资料,以确保审评审批工作的顺利进行。过渡期结束时间另行通知。 以下是对电子申报资料格式要求的总结&#…

从零开始:如何通过美颜SDK构建自己的直播美颜工具

今天,我将详细介绍如何通过美颜SDK从零开始构建自己的直播美颜工具。 一、了解美颜SDK 什么是美颜SDK 开发者可以通过集成SDK,快速在应用中实现这些功能,而无需从头编写复杂的图像处理算法。 选择合适的美颜SDK 选择时可以根据以下几个方…

南京观海微电子-----555函数信号发生器电路分析

电路图 整个电路的工作过程: 首先,555芯片通过外围电阻电容组成一个多谐振荡器,输出一个方波。 555多谐振荡器输出方波后,经电容C1耦合到由R3,C3组成的积分网络。输出三角波。这也是一个电容充放电的过程&#xff0c…

学生问的一道CSS3媒体查询,实现响应式设计的题

目录 题目要求: 解题思路: 解题: 1)大屏、3个DIV水平排列 2)中屏、前2个DIV水平占一半,第三个另起一行,宽度占满 3)小屏,3个DIV铺满,垂直排列 题目要求&…

2024年端午节放假通知

致尊敬的客户以及全体同仁: 2024年端午节将至,根据国务院办公厅通知精神,结合公司的实际情况,现将放假事宜通知如下: 2024年6月8日(星期六)至6月10日(星期一)&#xff…

科普丨什么是数字孪生灌区(平台)?如何建设?有何好处?

在农业发展的新时代,数字孪生灌区的概念逐渐走进大众视野,成为推动农业现代化、提升粮食安全保障能力的关键力量。那么,究竟什么是数字孪生灌区?它又是如何建设的?又能为我们带来哪些好处呢? 数字孪生灌区…

Java基础教程 - 10 异常

更好的阅读体验:点这里 ( www.doubibiji.com ) 10 异常 10.1 异常的概念 什么是异常? 异常(Exceptions)是指在程序执行过程中出现的错误或异常情况,导致程序无法继续正常执行的事件。 但是…

R_AARCH64_ADR_PREL_PG_HI21问题说明

目录 问题现象: 问题原因 问题机理 问题现象: 客户现场加载out文件出现如下问题: 打印“Relocation of type ‘R_AARCH64_ADR_PREL_PG_HI22…..’”,明确是ARDP指令引起的问题 问题原因 ARDP的寻址范围是4GB范围,加载的位置…