创新指南|2024企业如何开启生成式AI创新?从5大应用场景和6步抓手

想要了解如何采用生成式AI来提高企业效率和竞争力?本指南将介绍如何采用生成式AI来实现数字化转型,并打造智能化商业模式。从5大应用场景和6大步骤切入,让您了解如何开启生成式AI创新。立即连线创新专家咨询或观看创新战略方案视频进一步了解如何采用生成式AI来打造先发优势。让我们帮助您开启AI转型之旅!

1. 生成式AI所带来的创造力浪潮

ChatGPT已经唤醒了全球对人工智能(AI)和 生成式AI 变革潜力的认识,引起了全球的关注,并引发了空前绝后的创造力浪潮。它模仿人类对话和决策的能力使我们看到了AI在普及应用中的一个真正的拐点。最终,每个人都将看到这项技术的真正颠覆潜力。

ChatGPT在推出后仅两个月就达到了1亿月活跃用户,成为了历史上增长最快的消费者应用程序。

基础模型是指具有数十亿参数的大型通用模型的通用术语。当前,企业现在可以在这些基础模型的基础上构建专门的图像和语言生成模型。大型语言模型(LLMs)既是一种生成式AI,也是一种基础模型

ChatGPT背后的LLMs标志着人工智能的重要转折点和里程碑。有两件事让LLMs成为了游戏规则的改变者。首先,它们破解了语言复杂性的密码。现在,机器可以学习语言、上下文和意图,并独立生成和创造内容。其次,经过在大量数据(文本、图像或音频)上进行预训练后,这些模型可以适应或微调各种任务。这使它们可以在许多不同的方式中被重复使用或定制化。

企业领袖意识到了这一重要时刻的意义。他们可以看到LLMs和生成式AI将从根本上改变一切,从业务到科学,再到社会本身,开启新的创新前沿。对人类创造力和生产力的积极影响将是巨大的。例如,考虑到在所有行业中,Accenture发现40%的工作时间可以受到像GPT-4这样的LLMs的影响。这是因为语言任务占员工工作总时间的62%,其中65%的时间可以通过增强模型和自动化模型转化为更具生产力的活动。

从21世纪头十年开始,机器学习技术就迅速发展,可以分析大量在线数据并从中得出结论或者“学习”。这让企业能够以前所未有的速度和规模分析数据、发现模式、生成见解、进行预测并自动化任务。

随后,深度学习的感知能力得到了提升,推动了计算机视觉和语音领域的发展,包括自动驾驶汽车、语音助手等。

目前,随着基于深度学习的生成式AI技术的发展,我们正进入一个全新的语言掌握时代。这些模型将对企业产生深远的影响,从企业知识图谱到沟通协作流程,都将被重新塑造。总的来说,AI技术的飞速发展为企业带来了巨大的机遇和挑战,将深刻地改变企业内部的知识分享、沟通协作和运作流程,推动人类与技术的融合,开启了一个前所未有的智能时代。

2. 生成式AI更大价值潜能 - 以定制模型实现场景化需求

易于使用的生成式AI应用程序,如ChatGPT、DALL-E、Stable Diffusion等,正在快速将这项技术广泛普及到商业和社会中。这将对组织产生深远的影响。LLMs处理大规模数据集的能力使它们具有“知道”组织曾经了解和沉淀的一切的能力,包括企业的整个历史、背景、差异化和战略意图,以及其产品、市场和客户。通过语言传达的任何信息(应用程序、系统、文档、电子邮件、聊天、视频和音频记录)都可以被利用来推动下一级别的创新、优化和重构。

全球97%的高管都认为AI基础模型将实现跨数据类型的连接,彻底改变AI的使用地点和方式。现在大多数企业正处于采用周期的早期阶段,大多数组织开始通过使用“现成”基础模型进行创新实验。然而,对许多公司来说,当他们使用自己的数据来定制或调优模型以解决其独特需求时,生成式AI的价值潜能才能被最大程度地放大

  • 使用(Consume):生成式AI和LLM应用程序已经可以使用且易于访问。公司可以通过API来使用它们,并通过提示工程技术(如提示调整和举例学习)在小范围内为特定的商业用例进行调整。
  • 定制(Customize):大多数公司将需要通过使用自己的数据来对模型进行调优,以使其能被更广泛使用并增强使用价值。这将使模型能够支持整个业务的特定任务。其效果将是提高公司使用AI解锁创新的能力——提高员工能力、让客户满意、引入新的业务模式并增强对变化信号的响应能力。

生成式AI的使用和定制

3. 与AI协作成为新常态的5大应用场景

公司将使用这些模型来重构工作方式。每个企业中的每个角色都有被重新发明的潜力,因为人类与AI共同工作成为常态,极大地放大了人类的能力。在任何给定的工作中,一些任务将被自动化,一些将被增强(意味着在AI的辅助下完成地更好),而一些则不受技术的影响。还将有大量新的任务需要人类执行,例如,确保新的AI驱动系统被准确、可靠地使用。

生成式AI的五大场景

以下五大领域的职能将会受到影响:

1. 咨询型工作。AI模型将成为每个员工的最佳副手,通过将新型超个性化智能放在人类手中,提高个人生产力。例如,客户支持、销售、人力资源、医学和科学研究、企业战略和市场分析等。大型语言模型可以在处理约70%的客户服务沟通时发挥作用,这些沟通基于会话式,并由强大的智能机器人来完成,从理解客户的意图,自行生成答案,并提高答案的准确性和质量。

2. 创作型工作。生成式AI将成为人类的重要创意伙伴,这将成为新的头脑风暴方式,在生产设计、设计研究、视觉识别、品牌设计、文案生成和测试以及实时个性化等领域带来了前所未有的速度和创新。公司正在采用像DALL·E、Midjourney和Stable Diffusion这样的最先进的人工智能系统来进行社交媒体视觉内容生成外展。例如,DALL·E可以根据文本描述创建逼真的图像和艺术品,并在将单词转化为图片时可以处理高达120亿个参数。创建的图像然后可以在Instagram和Twitter上分享。

3. 技术型工作。软件编码人员将使用生成式AI大幅提高生产力,快速将一种编程语言转换为另一种,掌握编程工具和方法,自动化代码编写,预测和预防问题,并管理系统文档。埃森哲正在试点使用OpenAI LLM来增强开发人员的生产力,自动生成文档(例如SAP配置基准和功能或技术规格)。该解决方案使用户可以通过Microsoft Teams聊天提交请求,然后迅速返回正确打包的文档,这是一个很好地说明特定任务而不是整个工作将得到增强或自动化的例子。

4. 自动化工作。生成式AI对历史背景信息、下一步最佳行动、总结摘要能力和预测的精细理解,将在贯穿前台和后台的流程中催化出高效且个性化的新运作模式,将业务流程自动化推向一个变革性的新水平。一家跨国银行正在使用生成式AI和LLMs来改变其管理海量后交易处理电子邮件的方式,自动起草推荐性的消息并将其发送给收件人,这减少了手动工作同时提升了与客户互动的流畅性。

5. 维护型工作。随着时间的推移,生成式AI将支持企业治理和信息安全,风险防范,提高监管合规性,并通过在组织内外构建跨领域的风险识别、管理和防范型策略。在长期的战略性的AI网络防御中,LLMs将成为有力的武器,例如识别恶意软件并快速分类网站。与此同时,组织也需要注意,犯罪分子或将利用生成式AI的能力生成恶意代码或编写完美的钓鱼邮件。

2024创新战略

立即查看方案 >

下行周期企业创新如何做对?AI创新如何应对更不确定性?规划创新路线图,制订创新北极星,优选创新项目组合和配套创新组织机制推进执行。以此开启可持续创新增长的新篇章。

4. 6步助企业实验和采用生成式AI

公司有许多运用生成式AI和基础模型以最大化效率和获得竞争优势的途径。但为了更大程度放大这项技术所能带来的商业价值,公司需要重构智能化商业模式。商业领袖们需要带头引领变革,包括数字化战略重塑、日常流程和任务重塑和人员引进和培训。

为了开始采用这项技术,以下几点是必要的基本要素:

生成式AI的六大步骤

5.1 以业务驱动的思维导向

即使某个方向创新具有明显的优势,将其传播到整个组织中仍是非常具有挑战性的,特别是当创新将颠覆当前的工作方式时。通过尝试应用生成式AI的能力,公司将通过实践早期的成功案例、并通过变革推动者和意见领袖提高整体接受度并进一步推广创新,启动创新转型和再培训议程。

组织必须采取双模创新实验的方法。一种是专注于利用易于使用的现有模型和应用程序快速实现价值反馈。另一种则是专注于利用定制的模型重构业务、客户互动和产品服务的商业模式。

商业驱动的心态是定义并成功实施商业案例的关键。通过实验和探索创新机会,公司可以通过实际的价值,持续学习那种方式或者AI模型更适合不同的商业使用案例,投资回报率和技术复杂性水平因商业使用案例而异。企业还需要注意关注以下维度,敏捷地测试和改进数据安全性、模型准确性、偏见和公平性,并进行风险管理,例如何时需要人为干预的保障措施。

全球98%的高管认为,AI基础模型将在未来3至5年中在其组织的战略中发挥重要作用。企业应该以商业目标为导向,探索如何使用生成式AI来实现这些目标。例如,一家零售商可以使用生成式AI来预测客户购买行为,并根据这些预测来制定更有效的促销策略。

另一个案例是银行使用增强式的搜索功能为员工提供正确的信息。作为其三年创新计划的一部分,一家大型欧洲银行集团看到了革新知识库使用方式、赋予员工获取正确信息的能力,并实现成为数据驱动型银行的目标的机会。该银行利用Microsoft的Azure平台和GPT-3 LLM搜索电子文档,用户可以快速获得答案,从而节省时间并提高准确性和合规性。该项目还包括员工再培训,是将生成式AI应用于合同管理、对话式报告和票证分类的四个项目之一。

生成式AI

5.2 以人为本, 赋能为要

成功采用生成式AI需要同等关注人员和培训,和技术人才的引进。因此,公司应大幅增加对人才的投资,以应对研发AI和使用AI这两个不同的挑战。这意味着需要在技术能力(如AI工程和企业架构)方面引入相关人才,并在整个组织中培训员工有效地利用AI驱动的流程。例如,在我们对22个职业类别的分析中,我们发现LLMs将影响每个类别,从低端的工作日9%到高端的63%不等。在22个职业中的5个职业中,超过一半的工作时间可以通过LLMs进行转型。

生成式AI

企业应该考虑员工和客户在生成式AI实施中的角色,并确保他们能够理解和接受这种技术。例如,一家医疗保健公司可以使用生成式AI来帮助医生诊断疾病,但必须确保医生能够理解并信任这种技术。

事实上,独立的经济研究表明,公司在帮助员工跟上AI进步方面的投资明显不足,而这需要更复杂和基于判断的认知任务。即使是理解如何应用现实世界数据的领域专家(例如,医生解释健康数据)也需要足够的技术知识来了解这些模型的工作原理,以便对其使用作为“工作伙伴”充满信心。

由于文章篇幅有限,原文链接,请点击:

创新指南|2024企业如何开启生成式AI创新?从5大应用场景和6步抓手

延展文章:

1. A创新指南 | 如何利用人工智能技术实现企业营销效率提升10倍(上)

2. 创新趋势|以创业心态迎接AI时代是企业持续创新与增长的必由之路

3. 创新书荐|《生态驱动增长》打造以生态伙伴为中心的增长模式

4.  创新入门|解锁您的潜在市场:探秘付费点击广告(PPC)的秘密武器

5.  创新指南 | 企业AI战略 实施方案探讨(上):如何构建基于AI的新商业模型和业务场景

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/22521.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

test2042

语义边缘检测和语义分割的区别 语义边缘检测&语义分割 Semantic Edge Detection vs. Semantic Segmentation 区别difference 任务目标 Task Objective 语义边缘检测 Semantic Edge Detection 识别图像中不同物体之间的边界线或轮廓及语义类别 Identifying the boundaries …

2024如何优化SEO?

在2024年的今天,要问我会如何优化seo,我会专注于几个关键的方面。首先,随着AI内容生成技术的发展,我会利用这些工具来帮助创建或优化我的网站内容,但是,随着谷歌3月份的算法更新,纯粹的ai内容可…

无法访问内网怎么办?

许多用户在日常生活和工作中,经常需要进行远程连接和访问内网的需求。出于各种原因,有时我们会遇到无法访问内网的问题。本文将从可能的原因和解决方案的角度来探讨此问题。 原因分析 网络设置问题: 在一些情况下,我们无法访问内网可能是因为…

分层存储的图片的3d显示

分层存储的图片叠层成为3d,并显示。 文件夹D:\mask内的分层存储的图像文件mask_1.PNG至mask_12.PNG: 1、显示为3d点云: import open3d as o3d import numpy as np from PIL import Imagedef images2point_cloud(paths, layer_height):point…

(九)Spring教程——ApplicationContext中Bean的生命周期

1.前言 ApplicationContext中Bean的生命周期和BeanFactory中的生命周期类似,不同的是,如果Bean实现了org.springframework.context.ApplicationContextAware接口,则会增加一个调用该接口方法setApplicationContext()的步骤。 此外&#xff0c…

香橙派 Orange AIpro 测评记录视频硬件解码

香橙派 Orange AIpro 测评记录视频硬件解码 香橙派官网:http://www.orangepi.cn/ 收到了一块Orange Pi AIpro开发板,记录一下我的测评~测评简介如下:1.连接网络2.安装流媒体进行硬件解码测试3.安装IO测试 简介 Orange Pi AI Pro 是香橙派联合…

0基础学习区块链技术——链之间数据同步样例

我们可以在https://blockchaindemo.io/体验这个过程。 创建区块 默认第一个链叫Satoshi(中本聪)。链上第一个区块叫“创世区块”——Genesis Block。后面我们会看到创建的第二条链第一个区块也是如此。 新增链 新创建的链叫Debby。默认上面有一个创世区块。 然后我们让这…

C# 中文字符串转GBK字节的示例

一、编写思路 在 C# 中,将中文字符串转换为 GBK 编码的字节数组需要使用 Encoding 类。然而,Encoding 类虽然默认并不直接支持 GBK 编码,但是可以通过以下方式来实现这一转换: 1.使用系统已安装的编码提供者(如果系统…

从实战案例来学习结构化提示词(一)

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,所以创建了“AI信息Gap”这个公众号,专注于分享AI全维度知识,包括但不限于AI科普,AI工具测评,AI效率提升,AI行业洞察。关注我,AI之…

Python语法详解module1(变量、数据类型)

目录 一、变量1. 变量的概念2. 创建变量3. 变量的修改4. 变量的命名 二、数据类型1. Python中的数据类型2. 整型(int)3. 浮点型(float)4. 布尔型(bool)5. 字符串(str)6.复数&#xf…

MySQL中所有常见知识点汇总

存储引擎 这一张是关于整个存储引擎的汇总知识了。 MySQL体系结构 这里是MySQL的体系结构图: 一般将MySQL分为server层和存储引擎两个部分。 其实MySQL体系结构主要分为下面这几个部分: 连接器:负责跟客户端建立连 接、获取权限、维持和管理…

[数据集][图像分类]蘑菇分类数据集14689张50类别

数据集类型:图像分类用,不可用于目标检测无标注文件 数据集格式:仅仅包含jpg图片,每个类别文件夹下面存放着对应图片 图片数量(jpg文件个数):14689 分类类别数:50 类别名称:[“agaricus_augustus”,“agari…

流程引擎,灵活设计业务流程的编辑器设计

流程引擎,灵活设计业务流程的编辑器设计

PySpark特征工程(I)--数据预处理

有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。 特征工程是数据分析…

若依项目部署(Linux2.0)

解压jdk tar -zxvf jdk-8u151-linux-x64.tar.gz 配置Java环境变量: vim /etc/profile 设置环境变量生效: source /etc/profile 查看一下jdk版本: java -version 解压tomcat tar -zxvf apache-tomcat-8.5.20.tar.gz 防火墙设置: …

一款WPF的小巧MVVM框架——stylet框架初体验

今天偶然知道有一款叫做stylet的MVVM框架,挺小巧的,特别是它的命令触发方式,简单粗暴,让人感觉很神器。所以接下来我要做一个简单的demo,顺便来分享给大家。 本地创建一个WPF项目,此处我使用.NET 8来创建。…

ABB喷涂机器人IRB52维修指导分析

ABB喷涂机器人是一种非常重要的涂装设备,但是它的维护保养工作也必不可少。如果不定期维修保养,可能会导致ABB喷涂机械手故障,影响生产效率和产品质量。 首先,定期检查ABB涂装机器人IRB52喷嘴和喷枪是否正常,这是维修…

【Mac】Downie 4 for Mac(视频download工具)兼容14系统软件介绍及安装教程

前言 Downie 每周都会更新一个版本适配视频网站,如果遇到视频download不了的情况,请搜索最新版本https://mac.shuiche.cc/search/downie。 注意:Downie Mac特别版不能升级,在设置中找到更新一列,把自动更新和自动downl…

kafka-集群-生产消费测试

文章目录 1、集群生产消费测试1.1、消费者消费消息1.2、生产者生产消息 1、集群生产消费测试 1.1、消费者消费消息 [rootlocalhost ~]# kafka-console-consumer.sh --bootstrap-server 192.168.74.148:9095,192.168.74.148:9096,192.168.74.148:9097 --topic my_topic11.2、生…

Renesas MCU之定时器计数功能应用

目录 概述 1 功能介绍 1.1 时钟相关配置 1.2 应用接口 2 FSP配置Project参数 2.1 软件版本信息 2.2 配置参数 2.3 项目生成 3 定时器功能代码实现 3.1 定时器初始化函数 3.2 定时器回调函数 4 功能测试 5 参考文档 概述 本文主要介绍Renesas MCU的定时器功能的基…