【三维重建NeRF(三)】Mip-NeRF论文解读

本文结合深蓝学院课程学习和本人的理解,欢迎交流指正

文章目录

    • Mip-NeRF流程简述
    • 混叠问题与MipMap
    • Mip-NeRF提出的解决办法
    • 圆锥台近似计算与集成位置编码(IPE)

Mip-NeRF流程简述

Mip-NeRF的大体流程和NeRF基本是一样的,NeRF介绍
创新的部分就是针对NeRF出现的混叠问题,提出了用圆锥体来取代光线,NeRF一条射线对应Mip-NeRF一个圆锥体,NeRF一个采样点对应Mip-NeRF一个圆锥截台。利用三维高斯逼近圆锥截台(后面简称截台),得到高斯球内所有三维点位置编码的期望值,叫做集成位置编码(IPE)。然后将集成位置编码输入MLP,根据MLP的输出结果进行体渲染,后面的流程和NeRF没有大的区别。另外,Mip-NeRF简化了网络,不同于NeRF有一个粗网络和一个细网络,Mip-NERF只需要一个网络完成重建。

混叠问题与MipMap

奈奎斯特准则
要了解混叠问题首先需要知道奈奎斯特准则:在采样的过程中如果要让原始信号不丢失,那采样频率f必须大于2B,B是信号的最大频率。当f < 2B的时候,原本的高频信号会被混叠成低频信号,跟原有的低频信号产生了混合,导致产生锯齿、伪影等现象。由f > 2B有B < f / 2,所以产生混叠现象的一种解决方案就是在采样之前使用低通滤波器去除高于采样频率一半的频率分量。
低通滤波器
低通滤波器去噪的基本思想就是把噪声和周围的像素加权求和,达到一种平滑的效果。高斯滤波器就是一种常用的低通滤波器。
在这里插入图片描述
上面5*5的权重值,叫做滤波核,权重值是将滤波核坐标(x,y)和σ值带入上面公式计算得出的。σ的值越大,像素去除噪声能力越强,也越容易对有效信号产生干扰。图像上处于滤波核中间位置的值就是根据周围像素颜色乘权值的和得来的。
但图像越大滤波的时间越长,如果每次采样之前都要先进行滤波会降低系统性能,所以提出了一种策略叫做MipMap。
MipMap
MipMap(也称为金字塔纹理或多级渐进纹理)。它由一系列逐渐降低分辨率的纹理图像组成,每个级别都是上一个级别的一半大小。基本思想是:随着观察角度的增大,物体表面的细节应该相应减少,这样可以提高渲染效率并减少视觉伪影。
就是指根据一张大图平滑采样生成一系列小图,摄像机拉到某一个尺度,就用对应尺度分辨率的图片采样。预先计算各种分辨率的图像,这样在拉动摄像机的时候,就可以直接找到对应分辨率的图像进行细微的处理,减少计算量。

Mip-NeRF提出的解决办法

对于原始NeRF中已经训练好的模型,当摄像机往远离物体方向移动时,渲染结果就会存在混叠问题,因为NeRF是在固定尺度下进行训练的,当图片分辨率变化时没有自适应性。

那么在训练数据中增加摄像机远离物体方向的样本,可以解决这个问题吗?答案是不能。
在神经网络不变的情况下,对于同一个物体,摄像机往远离物体方向移动后体渲染得到的像素颜色C‘和原来体渲染得到的C是不同的。这样在训练的过程中,由于摄像机远近的不同,对于同一个图像我们希望神经网络输出的值是C’或C,是不统一的,在这种情况下,神经网络就会输出介于C’和C之间的值,导致增加远离物体的样本以后,模型在两种情况上的效果都不理想,可以参考下图(b)的效果。
在这里插入图片描述出现混叠的原因主要是采样频率过低,那么用超采样可以解决问题吗?可以抗混叠,但计算量太大,因此这种方法也不理想。
所以mip-NeRF提出的就是用低通滤波器来解决问题,用圆锥体取代光线。
在这里插入图片描述把每个圆锥截台里所有的像素做加权平均,这样考虑了邻域的像素,结果会更加平滑,再进行体渲染,就可以去除混叠。
但是如果计算神经网络中输出的截台上每一个像素点的σ和C值,再求平均,那计算量就太大了。
所以我们首先计算每个圆锥截台上所有点位置编码的平均值,然后送入神经网络,得到输出σ和C值。这样对于每一个圆锥截台,都会得到一个平滑后的σ和C值,再根据这些σ和C值实现体渲染,因此说NeRF的一个采样点对应Mip-NeRF一个圆锥截台。

圆锥台近似计算与集成位置编码(IPE)

首先我们要判断哪些点位于圆锥截台内,给出了一个公式,如果把三维点代入F(x,▪)=1的话,点x就是圆锥截台内的点。F(x,▪)是一个指示函数,通常表示为 1{⋅},具体来说,如果括号中的条件为真,则函数值为1;如果条件为假,则函数值为0。
关于期望的计算,F()可以理解为截台内点的个数,乘以每个点的位置编码γ(x),再除以点的个数得到位置编码,这个位置编码也叫集成位置编码。
在这里插入图片描述该公式括号内包含的两个条件需要同时满足,它们意义分别是:

  1. 点x处于t_0和t_1的中间。
  2. 点x处于图示圆锥体夹角范围内。

这两条就确定了点x的位置是处于截台内的。
但是截台位置编码期望的计算是比较困难的,因此我们要利用3D高斯逼近圆台,3D高斯是一个球,使x服从μ和σ的一个分布。为了找到这个合适的高斯球,定义了t_μ和t_σ,r是一个固定的值,这是根据圆半径计算公式得到的。
在这里插入图片描述将其转换到世界坐标系下,这样我们就能得到高斯球内位置坐标x的期望,但我们需要的是位置编码γ(x)的期望值。
为了便于表达,我们将位置编码写成矩阵的形式,很多网络中会将π直接去掉,这不会对性能产生很大的影响。
在这里插入图片描述要计算γ(x)的期望值,可以先计算sin( p)和cos( p)的期望,p服从是高斯分布,计算公式如上图。
得到了sin§和cos§的计算公式,那我们要求的E(γ(x))就是要求得[Esin(px), Ecos(px)]。
X ~ (μ , Σ)的均值分布,那么Px服从的分布如下图公式,继而可以得到集成位置编码的期望计算公式。
在这里插入图片描述这样我们就可以得到最终的集成位置编码计算公式,将其输入神经网络得到对应的颜色和体密度,再进行渲染。
mip-nerf采用集成位置编码,摄像机距离物体较近时,就会学习到高频信息。当摄像机距离变远时,高频位置信息就会被平滑,避免出现伪影,这样就实现了自适应。
NeRF有两套网络。一个均匀采样的粗网络和一个在均匀采样的基础上在体密度分布较多的地方多采样的细网络。Mip-NeRF由于圆锥截台的存在,所有的领域信息都会被考虑上,因此只需要一个网络。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/21924.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

系统安全及应用11

一个新的服务器到手之后&#xff0c;部署服务器的初始化 1、配置IP地址 网关 dns解析&#xff08;static&#xff09;内网和外网 2、安装源外网&#xff08;在线即可&#xff09;&#xff0c;内网&#xff08;只能用源码包编译安装&#xff09; 3、磁盘分区&#xff0c;lvm …

mybatis—plus和mybatis的区别

一前置知识&#xff1a; CRUD操作&#xff08;create 添加数据read读取数据 update 修改数据delete删除数据&#xff09; 二&#xff0c;总体概览 MyBatis-Plus 是一个 MyBatis 的增强工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发工作、提高…

二人订单共享模式:新零售电商盈利新秘诀

电商江湖日新月异&#xff0c;竞争如火如荼&#xff0c;如何脱颖而出&#xff0c;赢得消费者&#xff1f;二人订单共享模式&#xff0c;这是一种全新的商业模式&#xff0c;旨在打造爆款产品&#xff0c;迅速吸引大量客源&#xff0c;并激发消费者重复购买欲望。 首先&#xf…

Centos 报错 One of the configured repositories failed

目录预览 一、问题描述二、原因分析三、解决方案四、参考链接 一、问题描述 使用yum update更新命令就出现下面问题&#xff0c;系统是刚安装的&#xff0c;然后修改了一下IP变成手动。&#xff08;排查问题前&#xff0c;先回顾自己做了哪些操作&#xff0c;方便进一步排错&a…

C++程序命令行参数学习

argc是参数个数&#xff1b; argv[0]是程序名&#xff0c;argv[1]是第一个参数&#xff1b; 如果输入osgptr1 x &#xff0c;osgptr1是程序名&#xff0c;argc是2&#xff1b; 不算程序名&#xff0c;实际的参数个数是argc-1&#xff1b; #include <iostream>using …

免费!手把手教你用扣子搭建个人知识库

很多人都在寻找一个高效的方式来构建个人知识库&#xff0c;好消息是&#xff0c;随着AI大模型的兴起&#xff0c;每个人都有机会拥有一个熟悉自身的专属AI助手。今天&#xff0c;我就来跟大家详细分享一下如何使用字节跳动推出的神器——扣子&#xff0c;零代码构建个人或企业…

推荐低成本低功耗的纯数字现场可重构IC

CPLD采用CMOS EPROM、EEPROM、快闪存储器和SRAM等编程技术&#xff0c;从而构成了高密度、高速度和低功耗的可编程逻辑器件。 RAMSUN提供的型号LS98003是通用可配置的数字逻辑芯片&#xff0c;有体积小、超低功耗和高可靠性等特点。客户可以根据自己的功能需求设计芯片&#x…

MyBatis:简化数据库操作的强大工具

摘要&#xff1a;本文将介绍MyBatis&#xff0c;一个流行的Java持久层框架&#xff0c;它通过简单的API和易用的特性&#xff0c;帮助开发者更高效地进行数据库操作。我们将探讨MyBatis的核心概念、配置和使用方法&#xff0c;并通过示例展示其在实际项目中的应用。 正文&…

O2O : Finetuning Offline World Models in the Real World

CoRL 2023 Oral paper code Intro 算法基于TD-MPC&#xff0c;利用离线数据训练世界模型&#xff0c;然后在线融合基于集成Q的不确定性估计实现Planning。得到的在线数据将联合离线数据共同训练目标策略。 Method TD-MPC TD-MPC由五部分构成: 状态特征提取 z h θ ( s ) …

Mongodb的数据库简介、docker部署、操作语句以及java应用

Mongodb的数据库简介、docker部署、操作语句以及java应用 本文主要介绍了mongodb的基础概念和特点&#xff0c;以及基于docker的mongodb部署方法&#xff0c;最后介绍了mongodb的常用数据库操作语句&#xff08;增删改查等&#xff09;以及java下的常用语句。 一、基础概念 …

PhpSpreadsheet表格导出

个人笔记记录 使用PhpSpreadsheet 导出excel。 多重表头生成excel 表 //读取数据库public function demo1(){// 连接spc数据库$config Config::get(databaseedc);$db Db::connect($config);$data $db->name("xxxx")->alias(a)->field(main_header, sub_…

《网络安全技术 生成式人工智能服务安全基本要求》征求意见稿

1. 训练数据安全要求 &#xff08;1&#xff09;数据来源安全&#xff1a; 采集来源管理&#xff1a; 采集数据前应进行安全评估&#xff0c;含违法不良信息超过5%的数据源不得使用。 采集后需核验&#xff0c;含违法不良信息超过5%的数据不得用于训练。 不同来源训练数据搭…

四川汇聚荣聚荣科技有限公司评价怎么样?

四川汇聚荣聚荣科技有限公司评价如何?在科技日新月异的今天&#xff0c;四川汇聚荣聚荣科技有限公司作为业界的一员&#xff0c;其表现自然引起了广泛关注。那么&#xff0c;这家公司究竟如何呢?接下来&#xff0c;我们将从四个不同方面对其进行深入剖析。 一、技术实力 四川…

教务管理系统带万字文档基于springboot+vue的校务管理系统java项目

文章目录 教务管理系统一、项目演示二、项目介绍三、万字项目文档四、部分功能截图五、部分代码展示六、底部获取项目源码和万字论文参考&#xff08;9.9&#xffe5;带走&#xff09; 教务管理系统 一、项目演示 校务管理系统 二、项目介绍 基于springbootvue的前后端分离教…

Leetcode:整数转罗马数字

题目链接&#xff1a;12. 整数转罗马数字 - 力扣&#xff08;LeetCode&#xff09; 普通版本&#xff08;贪心&#xff09; 条件分析&#xff1a;罗马数字由 7 个不同的单字母符号组成&#xff0c;每个符号对应一个具体的数值。此外&#xff0c;减法规则还给出了额外的 6 个复…

简单聊下服务器防病毒

在当今数字化时代&#xff0c;服务器作为数据存储、处理与传输的核心设备&#xff0c;其安全性显得尤为关键。服务器防病毒工作&#xff0c;不仅是保障企业信息安全的重要一环&#xff0c;更是维护用户数据隐私的关键举措。以下&#xff0c;我们将从多个方面&#xff0c;简单探…

Unity之XR Interaction Toolkit如何使用XRSocketInteractable组件

前言 在虚拟现实(VR)和增强现实(AR)开发中,交互性是提升用户体验的关键。Unity作为一个领先的游戏开发引擎,提供了多种工具支持VR/AR开发。Unity的OpenXR插件扩展了这一功能,提供了更强大和灵活的交互系统。其中一个非常有用的组件是XRSocketInteractable。本文将详细介…

串口控制小车和小车PWM调速

1.串口控制小车 1. 串口分文件编程进行代码整合&#xff0c;通过现象来改代码 2.接入蓝牙模块&#xff0c;通过蓝牙控制小车 3.添加点动控制&#xff0c;如果APP支持按下一直发数据&#xff0c;松开就停止发数据&#xff08;蓝牙调试助手的自定义按键不能实现&#xff09;&…

随笔-我在武汉一周了

做梦一样&#xff0c;已经来武汉一周了&#xff0c;回顾一下这几天&#xff0c;还真是有意思。 周一坐了四个小时的高铁到了武汉站&#xff0c;照着指示牌打了个出租车。司机大姐开得很快&#xff0c;瞅了眼&#xff0c;最快速度到了110&#xff0c;差点把我晃晕。一下车就感觉…

计算机视觉与模式识别实验2-2 SIFT特征提取与匹配

文章目录 &#x1f9e1;&#x1f9e1;实验流程&#x1f9e1;&#x1f9e1;SIFT算法原理总结&#xff1a;实现SIFT特征检测和匹配通过RANSAC 实现图片拼接更换其他图片再次测试效果&#xff08;依次进行SIFT特征提取、RANSAC 拼接&#xff09; &#x1f9e1;&#x1f9e1;全部代…