网络I/O模型

网络I/O模型

  • 同步I/O
    • 阻塞I/O
    • 非阻塞I/O
    • I/O多路复用
      • select
        • 函数接口
        • 示例
      • poll
        • 函数接口
        • 示例
      • poll 和 select 的区别
      • epoll
        • 原理:
        • 示例
    • Reactor
      • 单 Reactor 单进程 / 线程;
      • 单 Reactor 多线程 / 进程;
      • 多 Reactor 多进程 / 线程;
  • 异步I/O

同步I/O

阻塞I/O

Alt

一个基本的C/S模型如下图所图:其中 listen()、connect()、write()、read() 都是阻塞I/O,用户态的进程在执行这些操作时会陷入内核态并被挂起。直到 socket() 上有数据可读/写时,进程才会从内核态切换到用户态,并完成数据在内核态和用户态之间的复制。

int fd = open("file.txt", O_RDONLY);
char buffer[100];
ssize_t bytes_read = read(fd, buffer, sizeof(buffer));	// 阻塞
close(fd);

非阻塞I/O

Alt

I/O多路复用

在获取事件时,先把我们要关心的连接传给内核,再由内核检测:

  • 如果没有事件发生,线程只需阻塞在这个系统调用,而无需像前面的线程池方案那样轮训调用 read 操作来判断是否有数据。
  • 如果有事件发生,内核会返回产生了事件的连接,线程就会从阻塞状态返回,然后在用户态中再处理这些连接对应的业务即可。

select

select() 函数是一个用于多路复用I/O的系统调用,允许程序同时监控多个文件描述符(如套接字、管道、终端等)的可读、可写或异常状态。

函数接口
#include <sys/select.h>int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);

其中:

  • nfds: 整型变量,表示在所有集合中最大的文件描述符加1。这是为了告诉select()需要检查的文件描述符范围。实际上,你只需要提供所有被监控的文件描述符中的最大值加1即可。
  • readfds: 指向fd_set结构的指针,用于存放待检查可读性的文件描述符集合。如果某个文件描述符在此集合中并且变为可读,select()返回后,该文件描述符在集合中的状态仍会被保持为已设置。
  • writefds: 用于存放待检查可写性的文件描述符集合。
  • exceptfds: 用于存放待检查异常条件的文件描述符集合。
  • timeout: 指向timeval结构的指针,用来指定select()调用的最大等待时间。如果为NULL,select()将一直阻塞直到有文件描述符满足条件;如果不为NULL且值为(0, 0),则select()会立即返回,不进行等待;如果指定了具体的时间,则select()最多等待指定的时间。

返回值

  • 正值: 返回的是已就绪的文件描述符的数量(包括可读、可写或异常的)。注意,这个值并不直接告诉你哪些描述符就绪,你需要通过FD_ISSET宏检查集合来确定具体哪些描述符准备好了。

  • 0: 表示在指定的超时时间内没有文件描述符变为就绪状态。

  • -1: 表示调用出错,此时可以查看errno来获取具体的错误信息。

示例
void updateReadSet(std::unordered_set<int> &clientFds, int &maxFd, int sockFd, fd_set &readSet) {maxFd = sockFd;FD_ZERO(&readSet);FD_SET(sockFd, &readSet);for (const auto &clientFd : clientFds) {if (clientFd > maxFd) {maxFd = clientFd;}FD_SET(clientFd, &readSet);}
}void handlerClient(int clientFd) {std::string msg;if (not EchoServer::RecvMsg(clientFd, msg)) {return;}EchoServer::SendMsg(clientFd, msg);
}int main(int argc, char *argv[]) {if (argc != 3) {std::cout << "invalid input" << std::endl;std::cout << "example: ./Select 0.0.0.0 1688" << std::endl;return -1;}int sockFd = EchoServer::CreateListenSocket(argv[1], atoi(argv[2]), false);if (sockFd < 0) {return -1;}int maxFd;fd_set readSet;EchoServer::SetNotBlock(sockFd);std::unordered_set<int> clientFds;while (true) {updateReadSet(clientFds, maxFd, sockFd, readSet);int ret = select(maxFd + 1, &readSet, NULL, NULL, NULL);if (ret <= 0) {if (ret < 0) perror("select failed");continue;}for (int i = 0; i <= maxFd; i++) {if (not FD_ISSET(i, &readSet)) {continue;}if (i == sockFd) {  // 监听的sockFd可读,则表示有新的链接EchoServer::LoopAccept(sockFd, 1024, [&clientFds](int clientFd) {clientFds.insert(clientFd);  // 新增到要监听的fd集合中});continue;}handlerClient(i);clientFds.erase(i);close(i);}}return 0;
}

poll

在 select() 中文件描述符集合是由一个大小为1024的位图实现的,为了支持监听更多的文件描述符,poll 结构体数组存放描述符集合。

struct pollfd {int   fd;		// 文件描述符short events;	// 监听的事件short revents;	// 返回的事件
}
函数接口
#include <poll.h>
// nfds 指明fds数组的大小
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
示例
void updateFds(std::unordered_set<int> &clientFds, pollfd **fds, int &nfds) {if (*fds != nullptr) {delete[](*fds);}nfds = clientFds.size();*fds = new pollfd[nfds];int index = 0;for (const auto &clientFd : clientFds) {(*fds)[index].fd = clientFd;(*fds)[index].events = POLLIN;(*fds)[index].revents = 0;index++;}
}void handlerClient(int clientFd) {std::string msg;if (not EchoServer::RecvMsg(clientFd, msg)) {return;}EchoServer::SendMsg(clientFd, msg);
}int main(int argc, char *argv[]) {if (argc != 3) {std::cout << "invalid input" << std::endl;std::cout << "example: ./Poll 0.0.0.0 1688" << std::endl;return -1;}int sockFd = EchoServer::CreateListenSocket(argv[1], atoi(argv[2]), false);if (sockFd < 0) {return -1;}int nfds = 0;pollfd *fds = nullptr;std::unordered_set<int> clientFds;clientFds.insert(sockFd);EchoServer::SetNotBlock(sockFd);while (true) {updateFds(clientFds, &fds, nfds);int ret = poll(fds, nfds, -1);if (ret <= 0) {if (ret < 0) perror("poll failed");continue;}for (int i = 0; i < nfds; i++) {if (not(fds[i].revents & POLLIN)) {continue;}int curFd = fds[i].fd;if (curFd == sockFd) {EchoServer::LoopAccept(sockFd, 1024, [&clientFds](int clientFd) {clientFds.insert(clientFd);  // 新增到要监听的fd集合中});continue;}handlerClient(curFd);clientFds.erase(curFd);close(curFd);}}return 0;
}

poll 和 select 的区别

  1. 数据结构和参数
  • select: 使用固定大小的位图(fd_set)来表示文件描述符集合,上限为1024.
  • poll: 使用动态数组(pollfd 结构体数组)来表示文件描述符集合。
  1. 性能
  • select: 每次调用时,用户态的文件描述符集合需要复制到内核态。
  • poll: 通过传递指针的方式避免了每次调用时复制整个文件描述符集合到内核。

epoll

原理:
  • 事件注册:使用epoll_create创建一个epoll文件描述符,然后通过epoll_ctl向这个文件描述符注册事件(如读、写、错误等)和对应的socket描述符。

  • 事件等待:通过epoll_wait函数等待一个或多个事件的发生。这个调用是阻塞的,直到至少有一个已注册的事件发生,或者超时,或者被中断。相比于select和poll,epoll_wait的优势在于它不会随着监听的文件描述符数量增加而导致效率下降,因为它内部维护了一个高效的红黑树结构来管理这些描述符。

  • 事件处理:当epoll_wait返回时,会给出一个就绪事件的列表,应用可以直接对这些事件进行处理,而无需遍历所有监控的文件描述符

水平触发和边缘触发:

  • LT模式下,只要事件未被处理,每次调用epoll_wait都会返回该事件。
  • ET模式下,事件仅在状态发生变化的那一刻返回一次,要求应用程序一次性处理完所有就绪的数据,否则可能会丢失事件。
示例
void handlerClient(int clientFd) {std::string msg;if (not EchoServer::RecvMsg(clientFd, msg)) {return;}EchoServer::SendMsg(clientFd, msg);
}int main(int argc, char *argv[]) {if (argc != 3) {std::cout << "invalid input" << std::endl;std::cout << "example: ./Epoll 0.0.0.0 1688" << std::endl;return -1;}int sockFd = EchoServer::CreateListenSocket(argv[1], atoi(argv[2]), false);if (sockFd < 0) {return -1;}epoll_event events[2048];int epollFd = epoll_create(1024);if (epollFd < 0) {perror("epoll_create failed");return -1;}EchoServer::Conn conn(sockFd, epollFd, false);EchoServer::SetNotBlock(sockFd);EchoServer::AddReadEvent(&conn);while (true) {int num = epoll_wait(epollFd, events, 2048, -1);if (num < 0) {perror("epoll_wait failed");continue;}for (int i = 0; i < num; i++) {EchoServer::Conn *conn = (EchoServer::Conn *)events[i].data.ptr;if (conn->Fd() == sockFd) {EchoServer::LoopAccept(sockFd, 2048, [epollFd](int clientFd) {EchoServer::Conn *conn = new EchoServer::Conn(clientFd, epollFd, false);EchoServer::AddReadEvent(conn);                 // 监听可读事件,保持fd为阻塞IOEchoServer::SetTimeOut(conn->Fd(), 0, 500000);  // 设置读写超时时间为500ms});continue;}handlerClient(conn->Fd());EchoServer::ClearEvent(conn);delete conn;}}return 0;
}

Reactor

Reactor 的意思是「反应器」,这里的反应指的是「对事件反应」,也就是来了一个事件,Reactor 就有相对应的反应/响应。

事实上,Reactor 模式也叫 Dispatcher 模式,即 I/O 多路复用监听事件,收到事件后,根据事件类型分配(Dispatch)给某个进程 / 线程
下图中,select 应为 epoll_wait!

Reactor 模式主要由 Reactor处理资源池这两个核心部分组成:

  • Reactor 负责监听和分发事件,事件类型包含连接事件、读写事件;
  • 处理资源池负责处理事件,如 read -> 业务逻辑 -> send;

Reactor 模式是灵活多变的,可以应对不同的业务场景,灵活在于:Reactor 的数量可以只有一个,也可以有多个;处理资源池可以是单个进程 / 线程,也可以是多个进程 /线程;

单 Reactor 单进程 / 线程;

进程里有 Reactor、Acceptor、Handler 这三个对象:

  • Reactor 对象的作用是监听和分发事件;
  • Acceptor 对象的作用是获取连接;
  • Handler 对象的作用是处理业务;

处理流程:

  • Reactor 对象通过 epoll_wait 监听事件,根据事件类型通过 dispatch 进行分发
  • 连接建立的事件交由 Acceptor 对象进行处理,Acceptor 对象会通过 accept 方法 获取连接,并创建一个 Handler 对象来处理后续的响应事件;
  • 如果不是连接建立事件, 则交由当前连接对应的 Handler 对象来进行响应;
  • Handler 对象通过 read -> 业务处理 -> send 的流程来完成完整的业务流程。

缺点:

  • 只有一个进程,无法充分利用 多核 CPU 的性能;
  • Handler 对象在业务处理时,整个进程是无法处理其他连接的事件的,如果业务处理耗时比较长,那么就造成响应的延迟;

单 Reactor 多线程 / 进程;

Alt

  • Reactor 对象通过 epoll_wait 监听事件,根据事件类型通过 dispatch 进行分发
  • 如果是连接建立的事件,则交由 Acceptor 对象进行处理,Acceptor 对象会通过 accept 方法 获取连接,并创建一个 Handler 对象来处理后续的响应事件;
  • 如果不是连接建立事件, 则交由当前连接对应的 Handler 对象来进行响应;

上面的三个步骤和单 Reactor 单线程方案是一样的,接下来的步骤就开始不一样了:

  • Handler 对象不再负责业务处理,只负责数据的接收和发送,Handler 对象通过 read 读取到数据后,会将数据发给子线程里的 Processor 对象进行业务处理;
  • 子线程里的 Processor 对象就进行业务处理,处理完后,将结果发给主线程中的 Handler 对象,接着由 Handler 通过 send 方法将响应结果发送给 client;
    缺点:
    因为一个 Reactor 对象承担所有事件的监听和响应,而且只在主线程中运行,在面对瞬间高并发的场景时,容易成为性能的瓶颈的地方

多 Reactor 多进程 / 线程;

Alt

  • 线程中的 MainReactor 对象通过 epoll_wait 监控连接建立事件,收到事件后通过 Acceptor 对象中的 accept 获取连接,将新的连接分配给某个子线程;
  • 子线程中的 SubReactor 对象将 MainReactor 对象分配的连接加入 select 继续进行监听,并创建一个 Handler 用于处理连接的响应事件。
  • 如果有新的事件发生时,SubReactor 对象会调用当前连接对应的 Handler 对象来进行响应。
  • Handler 对象通过 read -> 业务处理 -> send 的流程来完成完整的业务流程。

异步I/O

Alt
异步 I/O 「内核数据准备好」和「数据从内核态拷贝到用户态」这两个过程都不用等待。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/20916.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【吊打面试官系列】Java高并发篇 - 什么是自旋 ?

大家好&#xff0c;我是锋哥。今天分享关于 【什么是自旋 &#xff1f;】面试题&#xff0c;希望对大家有帮助&#xff1b; 什么是自旋 &#xff1f; 很多 synchronized 里面的代码只是一些很简单的代码&#xff0c;执行时间非常快&#xff0c;此时等待的线程都加锁可能是一种不…

CCIG学术论坛|文档解析技术加速大模型训练与应用

目录 前言一、大模型训练和应用过程的关键环节面临的问题1、数据2、算力3、语料4、训练时间5、模型规模与复杂度6、部署和推理效率7、安全和隐私 二、高精准、高效率的文档解析三、文档解析技术难点四、TextIn文档解析1、算法Pipeline2、文档图像预处理算法效果3、版面分析算法…

关于单链表——数组

1.单链表统计负数个数 要求实现一个函数&#xff0c;返回带头结点的单链表中负整数的个数。 函数接口定义&#xff1a; int NegativeInt(LinkList L); L是带头结点的单链表的头指针&#xff0c;函数NegativeInt返回L中负整数的个数。如果单链表为空&#xff0c;返回0。 其中Lin…

小熊家务帮day5-day7 客户管理模块1 (小程序认证,手机验证码认证,账号密码认证,修改密码,找回密码等)

客户管理模块 1.认证模块1.1 认证方式介绍1.1.1 小程序认证1.1.2 手机验证码登录1.1.3 账号密码认证 1.2 小程序认证1.2.1 小程序申请1.2.2 创建客户后端工程jzo2o-customer1.2.3 开发部署前端1.2.4 小程序认证流程1.2.4.1 customer小程序认证接口设计Controller层Service层调用…

【人工智能】第一部分:ChatGPT的基本概念和技术背景

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

STM32作业实现(八)触摸按键TPAD

目录 STM32作业设计 STM32作业实现(一)串口通信 STM32作业实现(二)串口控制led STM32作业实现(三)串口控制有源蜂鸣器 STM32作业实现(四)光敏传感器 STM32作业实现(五)温湿度传感器dht11 STM32作业实现(六)闪存保存数据 STM32作业实现(七)OLED显示数据 STM32作业实现(八)触摸按…

26 _ 虚拟DOM:虚拟DOM和实际的DOM有何不同?

虚拟DOM是最近非常火的技术&#xff0c;两大著名前端框架React和Vue都使用了虚拟DOM&#xff0c;所以我觉得非常有必要结合浏览器的工作机制对虚拟DOM进行一次分析。当然了&#xff0c;React和Vue框架本身所蕴含的知识点非常多&#xff0c;而且也不是我们专栏的重点&#xff0c…

VBA字典与数组第十五讲:多行多列数组与同列数单行数组间的运算规则

《VBA数组与字典方案》教程&#xff08;10144533&#xff09;是我推出的第三套教程&#xff0c;目前已经是第二版修订了。这套教程定位于中级&#xff0c;字典是VBA的精华&#xff0c;我要求学员必学。7.1.3.9教程和手册掌握后&#xff0c;可以解决大多数工作中遇到的实际问题。…

LabVIEW齿轮调制故障检测系统

LabVIEW齿轮调制故障检测系统 概述 开发了一种基于LabVIEW平台的齿轮调制故障检测系统&#xff0c;实现齿轮在恶劣工作条件下的故障振动信号的实时在线检测。系统利用LabVIEW的强大图形编程能力&#xff0c;结合Hilbert包络解调技术&#xff0c;对齿轮的振动信号进行精确分析…

高考后的赚钱新路径:千行赏金助你开启财富之旅

一、兼职背景与需求 随着高考的落幕&#xff0c;众多学子迎来了人生中的一大转折点。在迈向大学校园的门槛之前&#xff0c;许多学生希望利用这段空闲时间做些兼职&#xff0c;既能够充实自己的暑假生活&#xff0c;又能为家庭减轻经济负担&#xff0c;甚至为自己积累一些宝贵…

基于django | 创建app,并启动django

1、删除系统默认的目录路径&#xff1a;BASE_DIR / templetes 2、在终端输入命令&#xff1a; python manage.py startapp app01 # 这里的app01是我创建app的名称 3、如果没有创建成功&#xff0c;手动点击 Creat App , 4、在 setting.py 中找到 INSTALLED_APPS ,添加 ap…

pycharm简易使用码云gitee

文章目录 参考文献官网地址安装插件第一个选项报错了不可&#xff0c;第二个选项&#xff0c;可以了新库上传到主分支&#xff0c;push改进实验新建分支&#xff0c;上传为新分支&#xff1a;做另一种改进&#xff0c;选择回退主分支&#xff0c;另建一个分支 使用对于一个新项…

非线性系统:相平面法

非线性系统&#xff1a;相平面法 非线性系统的相平面法是一种重要的分析工具&#xff0c;用于研究系统的动力学行为。通过相平面法&#xff0c;可以直观地观察系统状态变量的变化&#xff0c;分析系统的稳定性、周期性和其他动力学特性。本文将详细介绍相平面法的基本思想、步…

[NOIP2015 提高组] 子串

题目背景 NOIP2015 Day2T2 题目描述 有两个仅包含小写英文字母的字符串 A A A 和 B B B。 现在要从字符串 A A A 中取出 k k k 个互不重叠的非空子串&#xff0c;然后把这 k k k 个子串按照其在字符串 A A A 中出现的顺序依次连接起来得到一个新的字符串。请问有多少…

Tree——输出项目的文件结构(Linux)

输出项目中的文件结构可以使用tree命令。tree是一个用于以树状结构显示目录内容的命令行工具。它非常适合快速查看项目的文件结构。安装&#xff1a; sudo apt-get install tree 使用&#xff1a; 在命令行中导航到项目的根目录&#xff0c;输出文件结构。 tree 也可以将结构输…

【30天精通Prometheus:一站式监控实战指南】第13天:graphite_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细

亲爱的读者们&#x1f44b;   欢迎加入【30天精通Prometheus】专栏&#xff01;&#x1f4da; 在这里&#xff0c;我们将探索Prometheus的强大功能&#xff0c;并将其应用于实际监控中。这个专栏都将为你提供宝贵的实战经验。&#x1f680;   Prometheus是云原生和DevOps的…

Vue3中的常见组件通信之props和自定义事件

Vue3中的常见组件通信 概述 ​ 在vue3中常见的组件通信有props、mitt、v-model、 r e f s 、 refs、 refs、parent、provide、inject、pinia、slot等。不同的组件关系用不同的传递方式。常见的撘配形式如下表所示。 组件关系传递方式父传子1. props2. v-model3. $refs4. 默认…

Python课设-学生信息管理系统

一、效果展示图 二、前端代码 1、HTML代码 <1>index.html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0">…

安卓模拟鼠标,绘图板操作电脑PC端,卡卡罗特也说好,儿童节快乐

家人们&#xff0c;上链接了&#xff1a;https://download.csdn.net/download/jasonhongcn/89387887

B站如何屏蔽短视频:成都鼎茂宏升文化传媒公司

B站如何屏蔽短视频&#xff1a;优化你的观看体验 在当今数字化时代&#xff0c;B站&#xff08;哔哩哔哩&#xff09;作为国内领先的弹幕视频网站&#xff0c;以其丰富的视频资源和独特的弹幕文化吸引了大量用户。然而&#xff0c;随着短视频的兴起&#xff0c;B站也引入了短视…