台湾省军事演习路径规划:A*算法在复杂地形中的应用

❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容,和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣!

  • 推荐:数据分析螺丝钉的首页 格物致知 终身学习 期待您的关注
    在这里插入图片描述

  • 导航

    • LeetCode解锁1000题: 打怪升级之旅:每题都包括3-5种算法,以及详细的代码实现,刷题面试跳槽必备
    • 漫画版算法详解:通过漫画的形式和动态GIF图片把复杂的算法每一步进行详细可视解读,看一遍就掌握
    • python源码解读:解读python的源代码与调用关系,快速提升代码质量
    • python数据分析可视化:企业实战案例:企业级数据分析案例与可视化,提升数据分析思维和可视化能力
    • 程序员必备的数学知识与应用:全面详细的介绍了工程师都必备的数学知识

期待与您一起探索技术、持续学习、一步步打怪升级 欢迎订阅本专栏❤️❤️

引言

在近期台湾附近的军事演习中,部队的调动和战术安排需要精确的路径规划,以确保各单位能够迅速、高效地到达指定位置。类似地,在计算机科学中,路径规划算法被广泛应用于导航、机器人控制和游戏开发等领域。今天,我们将通过军事演习的视角,解析一种经典的路径规划算法——A*算法。

军演背景

在一次模拟军演中,指挥官需要安排部队从多个起点移动到指定的战略位置。这些位置可能位于岛屿的不同角落,途中还有各种障碍物,如山地、河流和敌方防御工事。为了在复杂地形中找到最优路径,指挥官决定使用A*算法。
在这里插入图片描述

A*算法的原理

A算法是一种启发式搜索算法,它结合了广度优先搜索(BFS)和深度优先搜索(DFS)的优点,通过评估当前路径的代价和预估的剩余路径代价来找到最优路径。A算法使用一个优先级队列来选择下一步移动的节点。

关键概念
  1. 起点(Start):部队的出发位置。
  2. 终点(Goal):部队的目标位置。
  3. 开放列表(Open List):包含待评估的节点。
  4. 关闭列表(Closed List):包含已评估的节点。
  5. 代价函数(f(n)):用于评估节点的优先级,计算公式为 f(n) = g(n) + h(n),其中:
    • g(n):从起点到当前节点的实际代价。
    • h(n):从当前节点到终点的预估代价(启发式函数)。

军事演习中的A*算法应用

步骤
  1. 初始化

    • 将起点添加到开放列表,设定 g(start) = 0h(start) 为起点到终点的预估代价。
  2. 选择节点

    • 从开放列表中选择 f(n) 最小的节点作为当前节点。
  3. 生成后继节点

    • 为当前节点生成所有可能的后继节点,并计算它们的 g 值和 h 值。
    • 如果某个后继节点已经在关闭列表中,跳过它。
    • 如果某个后继节点不在开放列表中或新的 g 值更低,更新它的 g 值和 f 值,并将其父节点设为当前节点。
  4. 终止条件

    • 如果当前节点是终点,算法结束,并通过回溯父节点链得到最优路径。
    • 如果开放列表为空,表示没有找到路径。
示例

假设部队需要从A点福州移动到B点台州,地图如下:

A . . X . . . . . .
X X . X . X X X . .
. . . X . . . X . .
. X . . . X . . . .
. X X X . X X X X B

其中,. 表示可通行区域,X 表示障碍物。

  1. 初始化
    开放列表:[(A, f(A))]
    关闭列表:[]
    
  2. 选择节点
    • 选择A作为当前节点。
    • 生成A的后继节点。
  3. 更新列表
    开放列表:[(A1, f(A1)), (A2, f(A2)), ...]
    关闭列表:[A]
    
  4. 重复
    • 持续选择开放列表中 f(n) 最小的节点,生成后继节点,更新开放和关闭列表,直到找到B或开放列表为空。

A*算法的代码实现

import heapqdef heuristic(a, b):"""启发式函数,计算从节点a到节点b的曼哈顿距离"""return abs(a[0] - b[0]) + abs(a[1] - b[1])def a_star_search(start, goal, grid):"""使用A*算法在给定的网格(grid)中查找从start到goal的最优路径"""# 初始化开放列表并将起点添加到其中open_list = []heapq.heappush(open_list, (0, start))# 初始化记录路径的字典came_from = {}# 初始化g_score和f_score字典g_score = {start: 0}f_score = {start: heuristic(start, goal)}while open_list:# 从开放列表中取出f值最小的节点current = heapq.heappop(open_list)[1]# 如果当前节点是目标节点,回溯路径并返回if current == goal:path = []while current in came_from:path.append(current)current = came_from[current]path.append(start)path.reverse()return path# 生成当前节点的所有相邻节点for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:neighbor = (current[0] + dx, current[1] + dy)# 检查邻居节点是否在网格范围内且不是障碍物if 0 <= neighbor[0] < len(grid) and 0 <= neighbor[1] < len(grid[0]) and grid[neighbor[0]][neighbor[1]] == '.':tentative_g_score = g_score[current] + 1# 如果邻居节点不在g_score中或新的g值更低,更新路径和分数if neighbor not in g_score or tentative_g_score < g_score[neighbor]:came_from[neighbor] = currentg_score[neighbor] = tentative_g_scoref_score[neighbor] = g_score[neighbor] + heuristic(neighbor, goal)heapq.heappush(open_list, (f_score[neighbor], neighbor))# 如果开放列表为空且未找到目标节点,返回Nonereturn None# 示例地图
grid = [['A', '.', '.', 'X', '.', '.', '.', '.', '.', '.'],['X', 'X', '.', 'X', '.', 'X', 'X', 'X', '.', '.'],['.', '.', '.', 'X', '.', '.', '.', 'X', '.', '.'],['.', 'X', '.', '.', '.', 'X', '.', '.', '.', '.'],['.', 'X', 'X', 'X', '.', 'X', 'X', 'X', 'X', 'B']
]start = (0, 0)  # A点的位置(福州)
goal = (4, 9)   # B点的位置(台州)# 执行A*搜索算法并打印找到的路径
path = a_star_search(start, goal, grid)
print("找到的路径:", path)

总结

通过军事演习的视角,我们了解了A算法在路径规划中的应用。A算法通过结合实际代价和预估代价,能够高效地找到最优路径,适用于复杂的地形和障碍物环境。希望这个故事和示例能够帮助你更好地理解A*算法的工作原理及其在实际中的应用。

🌹🌹如果觉得这篇文对你有帮助的话,记得一键三连关注、赞👍🏻、收藏是对作者最大的鼓励,非常感谢 ❥(^_-)

❤️❤️关注公众号 数据分析螺丝钉 回复 学习资料 领取高价值免费学习资料❥(^_-)
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/15060.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【全开源】分类记账小程序系统源码(ThinkPHP+FastAdmin+UniApp)

基于ThinkPHPFastAdminUniAppvk-uView-uiVue3.0开发的一款支持多人协作的记账本小程序&#xff0c;可用于家庭&#xff0c;团队&#xff0c;组织以及个人的日常收支情况记录&#xff0c;支持周月年度统计。 &#xff1a;智能管理您的财务生活 一、引言&#xff1a;财务智能化…

HTTP 错误 404.3 - Not Found 问题处理

问题描述 HTTP 错误 404.3 - Not Found 由于扩展配置问题而无法提供您请求的页面。如果该页面是脚本&#xff0c;请添加处理程序。如果应下载文件&#xff0c;请添加 MIME 映射。 解决对策

如何网页在线编辑 Office word 文档,并支域功能:创建域/插入域/替换域等

在日常在线办公场景中&#xff0c;我们经常会遇到一些复杂的文档编辑需求&#xff0c;特别是我们经常会遇到一些复杂的数学公式&#xff0c;会用到“域”功能&#xff0c;“域”功能便是一个高级且实用的工具。通过设置域&#xff0c;用户可以实现文档的自动化处理&#xff0c;…

【QT实战】汇总导航

✨Welcome 大家好&#xff0c;欢迎来到瑾芳玉洁的博客&#xff01; &#x1f611;励志开源分享诗和代码&#xff0c;三餐却无汤&#xff0c;顿顿都被噎。 &#x1f62d;有幸结识那个值得被认真、被珍惜、被捧在手掌心的女孩&#xff0c;不出意外被敷衍、被唾弃、被埋在了垃圾堆…

捕捉二氧化碳也能赚钱?深入探索CCUS技术与商业前景

引言 随着全球变暖和气候变化的加剧&#xff0c;如何有效减少二氧化碳&#xff08;CO2&#xff09;排放成为各国亟待解决的问题。近日&#xff0c;全球最大的二氧化碳捕集工厂在冰岛正式运营&#xff0c;这一消息引起了广泛关注。本文将深入探讨捕集二氧化碳技术&#xff08;C…

跟TED演讲学英文:Bring on the learning revolution! by Sir Ken Robinson

Bring on the learning revolution! Link: https://www.ted.com/talks/sir_ken_robinson_bring_on_the_learning_revolution Speaker: Sir Ken Robinson Date: February 2010 文章目录 Bring on the learning revolution!IntroductionVocabularySummaryTranscriptAfterword I…

基于 BERT 对 IMDB 电影评论进行情感分类

前言 系列专栏:【深度学习&#xff1a;算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域&#xff0c;讨论了各种复杂的深度神经网络思想&#xff0c;如卷积神经网络、循环神经网络、生成对…

# AI产品经理的自我修养:既懂用户,更懂技术!

今天上班的时候&#xff0c;发现很多AI社群都在讨论一篇播客《一个顶级AI产品经理的自我修养&#xff0c;对谈光年之外产品负责人Hidecloud》&#xff0c;这篇播客的嘉宾是光年之外的产品负责人——Hidecloud&#xff08;张涛&#xff09;&#xff0c;聊了许多关于他在做AI产品…

MySQL多表关联查询习题

一、素材 -- Active: 1714203732007127.0.0.13306db_stu -- 1.创建student和score表 CREATE TABLE student ( id INT(10) NOT NULL UNIQUE PRIMARY KEY , name VARCHAR(20) NOT NULL , sex VARCHAR(4) , birth YEAR, department VARCHAR(20) , address VARCHAR(50) ); -- 创建…

【机器学习】机器学习基础概念与初步探索

❀机器学习 &#x1f4d2;1. 引言&#x1f4d2;2. 机器学习概述&#x1f4d2;3. 机器学习基础概念&#x1f389;2.1 机器学习的分类&#x1f389;2.2 数据预处理&#x1f308;数据清洗与整合&#x1f308; 特征选择和特征工程&#x1f308;数据标准化与归一化 &#x1f4d2;4. …

探数API统计分享-2017年-2021年中国各省人均消费支出统计

根据2017年至2021年的统计数据&#xff0c;我国各省&#xff08;市、区&#xff09;的人均消费支出情况各不相同。其中&#xff0c;上海的人均消费支出最高&#xff0c;达到了2021年的48879元&#xff0c;位居全国之首。紧随其后的是北京&#xff0c;人均消费支出为43640元。 …

类和对象(下篇)(未完结)!

文章目录 在谈构造函数1.构造函数体赋值2.初始化列表尽量使用初始化列表&#xff1f;初始化列表的初始化顺序&#xff1f;成员变量声明处的缺省值构造函数支持类型转换3.explicit关键字 static成员 在谈构造函数 1.构造函数体赋值 class Date{public:Date(int year, int mont…

其它高阶数据结构⑦_Skiplist跳表_概念+实现+对比

目录 1. Skiplist跳表的概念 2. Skiplist跳表的效率 3. Skiplist跳表的实现 3.1 力扣1206. 设计跳表 3.2 Skiplist的初始化和查找 3.3 Skiplist的增加和删除 3.4 Skiplist的源码和OJ测试 4. 跳表和平衡搜索树/哈希表的对比 本篇完。 1. Skiplist跳表的概念 skiplist是…

麻省理工出品!这个自动化神器让你的电脑自己工作

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

软件即服务-SaaS

目录 1. SaaS成熟度模型 2. SaaS应用平台 3. SaaS应用实现层次 4. 多租户技术 5. 可配置性 5.1 业务构件 5.2 数据可配置 5.2.1 定制字段 5.2.2 预分配字段 5.2.3 名称值对 5.3 功能可配置 5.3.1 业务构件设计 5.3.2 功能包设计 5.3.3 销售包设计…

16.线性回归代码实现

线性回归的实操与理解 介绍 线性回归是一种广泛应用的统计方法&#xff0c;用于建模一个或多个自变量&#xff08;特征&#xff09;与因变量&#xff08;目标&#xff09;之间的线性关系。在机器学习和数据科学中&#xff0c;线性回归是许多入门者的第一个模型&#xff0c;它…

A股重磅!史上最严减持新规,发布!

此次减持新规被市场视为A股史上最严、最全面的规则&#xff0c;“花式”减持通道被全面“封堵”。 5月24日晚间&#xff0c;证监会正式发布《上市公司股东减持股份管理暂行办法》&#xff08;以下简称《减持管理办法》&#xff09;及相关配套规则。 据了解&#xff0c;《减持…

工作学习的电脑定时关机,定时重启,定时提醒

可以直接下载工具&#xff1a; 定时自动关机 大家好&#xff0c;&#xff01; 在我们学习与工作时&#xff0c;经常会遇到想要在完成一个任务后&#xff0c;再关闭电脑或对电脑重启&#xff0c;但这个时间点&#xff0c;操作电脑的人可能不能在电脑旁边&#xff0c;这样就需要…

大语言模型的工程技巧(四)——梯度检查点

相关说明 这篇文章的大部分内容参考自我的新书《解构大语言模型&#xff1a;从线性回归到通用人工智能》&#xff0c;欢迎有兴趣的读者多多支持。 本文将讨论如何利用梯度检查点算法来减少模型在训练时候&#xff08;更准确地说是运行反向传播算法时&#xff09;的内存开支。…

机器学习-决策树算法

前言 本篇介绍决策树与随机森林的内容&#xff0c;先完成了决策树的部分。 决策树 决策树(Decision Tree)是一种有监督学习的方法&#xff0c;可以同时解决分类和回归问题&#xff0c;它能够从一系列有特征和标签的数据中总结出决策规则&#xff0c;并用树状图的结构来呈现这…