【数据结构】时间、空间复杂度实例分析

跌倒了,就重新站起来,继续向前走;傻坐在地上是没用的。💓💓💓

目录

•✨说在前面

🍋知识点一:算法的效率

  • 🌰1.斐波那契数列的第n项

 • 🌰2.算法的复杂度

🍋知识点二:时间复杂度

  • 🌰1.时间复杂度的概念

 • 🌰2.大O的渐进表示法

🔥复杂度的一般分析法则

🔥总结求解复杂度的方法

 • 🌰3.时间复杂度的量级

 • 🌰4.时间复杂度增长趋势​​​​​​​

  • 🌰5.时间复杂度计算案例

🔥案例1:单个同量级for循环

🔥案例2:多个同量级for循环

🔥案例3:常数控制的for循环

🔥案例4:strchr函数的时间复杂度

🔥案例5:冒泡排序的时间复杂度

🔥案例6:调整语句为i=i*2的for循环

🔥案例7:二分查找的时间复杂度

🔥案例8:递归求阶乘

🔥案例9:递归求斐波那契数列的第n项

🍋知识点三:空间复杂度

   • 🌰1.空间复杂度的概念

  • 🌰2.空间复杂度计算案例

🔥案例1:冒泡排序的空间复杂度

🔥案例2:递归求阶乘

• ✨SumUp结语


•✨说在前面

亲爱的读者们大家好!💖💖💖,我们又见面了,在之前的阶段我们学习了顺序表、链表,包括单链表和双向链表,还刷了一些算法OJ练习。这些练习,我们有时可以有多种思路和方法解决,那我们如何对这些方法进行取舍呢?哪些方法是最优的呢?为此,我们必须进入学习时间复杂度和空间复杂度的相关知识,相信你学习完后就可以回答这个问题了。

   

 👇👇👇
💘💘💘知识连线时刻(直接点击即可)

  🎉🎉🎉复习回顾🎉🎉🎉

【数据结构】顺序表专题详解(带图解析)

【数据结构】单链表专题详细分析

【数据结构】双向循环链表专题解析

    

  博主主页传送门:愿天垂怜的博客

🍋知识点一:算法的效率

  • 🌰1.斐波那契数列的第n项

在讲解时间复杂度与空间复杂度之前,我们先看一个简单的例子:

练习:写一个程序,求出斐波那契数列的第n项的值。

方法1:迭代法

long long Fibonacci(int n)
{int x1 = 1;int x2 = 1;int x3 = 1;while (n >= 3){x3 = x1 + x2;x1 = x2;x2 = x3;n--;}return x3;
}

方法2:递归法

long long Fibonacci(int n)
{if (n == 1 || n == 2)return 1;return Fibonacci(n - 1) + Fibonacci(n - 2);
}

由观察不难发现,递归的写法明显要比迭代的写法要短的多,那是不是就说明递归的写法就比迭代的写法更好呢?其实不然,实际上用递归来写的话它的运行效率将会大大降低。

比如求第50项,就要先得到49项和48项,要得到第49项,就要得到48项和47项……它会执行很多很多次,这是它效率不高的原因。

所以,项数较大时,我们还是用循环(迭代)的方式来实现。

所以说,我们不能只根据程序的长短就果断地判断程序的好坏。

 • 🌰2.算法的复杂度

那究竟如何衡量算法的好坏呢?就是要看程序的时间复杂度空间复杂度。

算法在编写成可执行的程序后,运行时需要耗费时间资源和空间(内存)资源,因此衡量一个算法好坏,一般从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小,所以对于空间复杂度很是在乎,但结果计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度,所以我们如今已经不需要再特别关注一个算法的空间复杂度,转而更加关注他的时间复杂度。

🍋知识点二:时间复杂度

  • 🌰1.时间复杂度的概念

定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。

一个算法执行所消耗的时间,从理论上来说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?这显然非常麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

 • 🌰2.大O的渐进表示法

实际问题中我们不需要精确的计算执行次数,而只需要大概的执行次数,即使用大O的渐进表示法。

公式如下:

🎉参数:

• T(n):代码执行所需要的时间,它是n的函数,T(n)代表了算法的时间复杂度。

• n:数据规模的大小,但有可能不止一个,如两个for循环分别循环m、n次,则该参数为m、n。

• f(n):每行代码执行的次数总和,它是n的函数,但我们只关注最大量级的那一项。

• O:表示T(n)与f(n)之间的关系为正比例,即一个算法所花费的时间与其中语句的执行次数成正比。

🔥复杂度的一般分析法则

1)单端代码看高频:比如for、while循环。

2)多段代码取最大:比如一段代码中有单循环和多重循环,那么取多重循环的复杂度。

3)嵌套代码求乘积:例如递归、多重循环的结构。

4)多个规模求加法:比如算法中有两个参数控制了两个for循环,那么此时复杂度取二者复杂度之和。

🎉举例:

//请计算一下Func1中++count语句总共执行了多少次?
void Func(int n)
{int count = 0;for (int i = 0; i < n; ++i){for (int j = 0; j < n; ++j){++count;}}for (int k = 0; k < 2 * n; ++k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

根据复杂度的分析原则,在上面的这个函数Func1中,第一个循环是嵌套结构,for循环嵌套结构执行了n^2次,第二个for循环执行了2n次,最后一个while循环执行了10次。

由此,这个函数中基本语句的执行次数f(n)的表达式为:f(n)=n^2+2n+10,所以T(n)=O(n^2+2n+10)。但是,大O的渐进表示法并不具体代表代码真正的执行时间,而是代表代码执行时间随数据规模n增长的变化趋势。

当n很大时,比如1000、100000,此时公式中的低阶、常量、系数三部分不左右增长趋势,所以都可以忽略,只关注最高阶的那一项就可以了。

所以最终,Func的时间复杂度表示为:T(n)=O(n^2)。

🔥总结求解复杂度的方法

1)只关注循环执行次数最多的一段代码,总复杂度等于量级最大的那段代码的复杂度

2)加法法则:若控制两个for循环的数量级相同,则总复杂度取二者复杂度之和。

3)乘法法则:嵌套循环的复杂度等于嵌套内外代码复杂度的乘积。

 • 🌰3.时间复杂度的量级

多项式阶:随着数据规模的增长,算法的执行时间和空间占用,按照多项式的比例增长,包括:O(1)(常数阶)、O(logn)(对数阶)、O(n)(线性阶)、O(nlogn)(线性对数阶)、O(n^2)(平方阶)、O(n^3)(立方阶)。

非多项式阶:随着数据规模的增长,算法的执行时间和空间占用暴增,这类算法性能极差。包括,
O(2^n)(指数阶)、O(n!)(阶乘阶)。

 

 • 🌰4.时间复杂度增长趋势

常见不同数量级的复杂度增长趋势图如下:

 另外有些算法的时间复杂度存在最好、平均和最快的情况:

🎉最坏情况:代码在最坏情况下执行的时间复杂度,即任意输入规模的最大运行次数(上界)。

🎉平均情况:代码在所有情况下执行的次数的加权平均值,即任意输入规模的期望运行次数。

🎉最好情况:代码在最理想情况下执行的时间复杂度,任意输入规模的最小运行次数(下界)。

比如:在一个长度为N的数组中搜索数据x

最坏情况:N次找到

平均情况:N/2次找到

最好情况:1次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据的时间复杂度为O(N)。

  • 🌰5.时间复杂度计算案例

🔥案例1:单个同量级for循环

计算Func2的时间复杂度。

void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N; ++k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

函数Func2中,第一个for循环执行了2N次,第二个while循环的执行次数是M,但是M为已知量10,量级最大的为2N,所以Func2的时间复杂度为O(N)

🔥案例2:多个同量级for循环

计算Func3的时间复杂度。

void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++k){++count;}for (int k = 0; k < N; ++k){++count;}printf("%d\n", count);
}

函数Func3中,第一个for循环执行了M次,第二个for循环执行了N次,且M、N量级相同,所以Func3的时间复杂度为O(M+N),或O(max(M,N))

注意:若M>>N,则时间复杂度为O(M),若M<<N,则时间复杂度为O(N)。

🔥案例3:常数控制的for循环

计算Func4的时间复杂度。

void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++k){++count;}printf("%d\n", count);
}

函数Func4中,控制for循环的次数为常数,代码不随n的增长而增长,常数阶的时间复杂度为O(1),即Func4的时间复杂度为O(1)

🔥案例4:strchr函数的时间复杂度

strchr:strchr() 用于查找字符串中的一个字符,并返回该字符在字符串中第一次出现的位置。

strchr函数模拟实现代码如下:

const char* my_strchr(const char* str, int character)
{assert(str);while (*str){if (*str == character)return str;elsestr++;}
}

在strchr查找的过程中,最好的情况是字符character就在下一个字符,一次就可以找到,也就是常数阶,此时时间复杂度为O(1);最坏的情况是字符character在离位置的无穷远处,也就是线性阶。此时时间复杂度为O(N);取最坏的情况,所以strchr的时间复杂度为O(N)

🔥案例5:冒泡排序的时间复杂度

计算冒泡排序BubSort的时间复杂度。

void bubSort(int arr[], int length)
{assert(arr);int flag = 1;while (flag && length--){flag = 0;for (int i = 0; i < length; i++){if (arr[i] > arr[i + 1]){int temp = arr[i];arr[i] = arr[i + 1];arr[i + 1] = temp;flag = 1;}}}
}

冒泡排序中,由类似案例2的嵌套循环结构,但是像案例2这样的嵌套循环,它的内层for循环的控制参数是不变的,也就是说,内部循环一共执行了M次,每次执行内部循环都需要循环N次,所以总共的执行次数是M*N,这很好理解,但现在冒泡排序的内部循环一共执行了length次,而第一次for循环length次,第二次length-1次,第三次length-2次...,若考虑最坏的情况,最后到1次。这种情况怎么处理呢?

显然内部for循环的循环次数是一个等差数列,其中公差d=2,首项a1=1,尾项an=length(简写为n),项数为length。对于这样一个等差数列,我们可以对其求和,所得到的结果不就是所有的执行次数了吗?

根据高斯求和公式,很容易计算出等差数列的前n项和,即基本操作的执行次数,显然为平方阶,量级为N^2,所以冒泡排序Bubsort的时间复杂度为O(N^2)

其实对于案例2这样每次都是循环固定次数的嵌套,或者说,任意的双层嵌套都可以转化为数列求和的问题,如案例2,显然就是一个公差d=0,首项为N,尾项为N,项数为M的等差数列

 根据高斯求和公式,也能够分析出基本操作的执行次数,即时间复杂度为O(MN)

🔥案例6:调整语句为i=i*2的for循环

计算Func5的时间复杂度。

void Func5(int n)
{int x = 0;for (int i = 1; i < n; i *= 2){x++;}
}

函数Func5中,这个for循环的调整语句为i*=2,即i每次都是前一次的两倍。这种循环是有规律的,这个我们后面再说。我们先直接分析这个函数,假设基本语句x++执行了N次,那么有循环语句可得:

所以我们得到,执行次数N为对数阶,所以时间复杂度为O(logN)这里需要注意,为了方便起见,当底数为2时,我们直接将底数2省略不写, 

🔥案例7:二分查找的时间复杂度

计算二分查找BinarySearch的时间复杂度。

int BinarySearch(int arr[], int length, int x)
{assert(arr);int left = 0;int right = length - 1;while (left <= right){int mid = left + right - ((left - right) >> 1);if (arr[mid] < x)left = mid + 1;else if (arr[mid] > x)right = mid - 1;else if (mid == x)return x;}return -1;
}

在二分查找函数BinarySearch中,如果我们直接观察while循环的话,其实是不太好看出来的,因为left和right时不时都在改变,此时我们不要死盯代码,一定要理解它的实际意义,也可以看图进行观察

 最好的情况我们很容易想到,就是要查找的x就在中间,我们一下就找到了,此时是时间复杂度为O(1)。那最坏的情况呢?其实就是当要查找的x在数组的两端的时候,比如x是第一个元素,此时我们设mid到x的距离为n,则mid会以每次靠近一半的速度逼近第一个元素x,也就是每次都除以2,直到这个值等于1,就找到了第一个元素。我们设循环执行了N次,mid第一次的位置为n,则

同样地,如果x是最后一个元素,也是同样的道理。显然为对数阶,所以二分查找BinarySearch的

的时间复杂度为O(logN)

🔥案例8:递归求阶乘

计算Fact的时间复杂度。

long long Fact(size_t N)
{if (0 == N)return 1;return Fac(N - 1) * N;
}

这是一个递归求阶乘的函数。在函数Fact中,我们假设N=5的情况如下:

可以发现,每次递归的单个函数都是常数阶,即O(1),而递归总共调用了5+1=6次(Fact(5)、Fact(4)、Fact(3)、Fact(2)、Fact(1)、Fact(0))。

以递归的函数我们先看单个函数内部的阶,再看递归了多少次。如果是N,那么每个函数为O(1),递归了N+1次,那么总共为(N+1)O(1),所以递归求阶乘函数的时间复杂度为O(N)

🔥案例9:递归求斐波那契数列的第n项

计算Fibonacci函数的时间复杂度。

long long Fibonacci(int n)
{if (n == 1 || n == 2)return 1;return Fibonacci(n - 1) + Fibonacci(n - 2);
}

同样的道理,我们看单个函数内部的阶,显然为O(1),那递归了多少次呢?

我们以n=5为例,此时我们能画出面类似于树状图的结构,在数的每个节点都进而伸出两个节点,第一行为个数为1(2^0),第二行个数为2(2^1),第三行个数为4(2^2)...以此类推,第n行的个数为2^n。但其实上大家能看到,这颗树是歪的,它的底部缺失了一块三角形的部分,但是当n很大时,这些缺失的部分相对于整体的个数其实就很少了,由此我们可以将每一行的递归次数看做一项,那整体就可以看做首项a1=1,公比q=2的等比数列,求和得到的即是全体递归的总次数。

虽然真正的递归次数没有这么多,但是它的量级是不会被影响的,依然是指数阶,所以用递归求斐波那契数列的第n项,它的时间复杂度为O(2^N)

稍许有些不严谨,在二叉树的部分我们还会提到。

🍋知识点三:空间复杂度

   • 🌰1.空间复杂度的概念

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的亮度。

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本和时间复杂度类似,也是大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式的额外空间来确定。

  • 🌰2.空间复杂度计算案例

🔥案例1:冒泡排序的空间复杂度

计算冒泡排序BubSort的空间复杂度。

void bubSort(int arr[], int length)
{assert(arr);int flag = 1;while (flag && length--){flag = 0;for (int i = 0; i < length; i++){if (arr[i] > arr[i + 1]){int temp = arr[i];arr[i] = arr[i + 1];arr[i + 1] = temp;flag = 1;}}}
}

在冒泡排序BubSort中,创建了:int flag = 1,int i = 0两个变量,为常数个,所以冒泡排序的空间复杂度为O(1)。 

注意:空间复杂度算的是算法中额外开辟的空间,所以数组arr和长度length并不算在内。

🔥案例2:递归求阶乘

计算Fact函数的空间复杂度。

long long Fact(size_t N)
{if (0 == N)return 1;return Fac(N - 1) * N;
}

对于这样的一个递归函数,每次递归都会在栈上创建栈帧空间(函数栈帧),每个栈帧使用了常数个空间,所以空间复杂度为O(N)

• ✨SumUp结语

数据结构的学习一定要多画图,多理解,多思考,切忌直接抄写代码,就认为自己已经会了,一定到自己动手,才能明白自己哪个地方有问题。

 

如果大家觉得有帮助,麻烦大家点点赞,如果有错误的地方也欢迎大家指出~

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/13139.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

001_PyQt简介

本系列面向零基础小白&#xff0c;从零开始到Pyqt 进行项目实战。 什么叫从零开始&#xff1f;从软件安装、环境配置开始。 不跳过一个细节&#xff0c;不漏掉一行代码&#xff0c;不省略一个例图。 PyQt作为一个强大的工具包&#xff0c;成功地将脚本语言python和QT库融合到…

nginx反向代理kafka集群实现内外网隔离访问 —— 筑梦之路

背景说明 我们在使用Kafka客户端连接到Kafka集群时&#xff0c;即使连接的节点只配置了一个集群的Broker地址&#xff0c;该Broker将返回给客户端集群所有节点的信息列表。然后客户端使用该列表信息&#xff08;Topic的分区信息&#xff09;再与集群进行数据交互。这里Kafka列表…

当CV遇上transformer(三)Clip模型及源码分析

当CV遇上transformer(三)Clip模型及源码分析 2020年10月&#xff0c;Dosovitskiy首次将纯Transformer的网络结构应用于图像分类任务中(ViT)&#xff0c;并取得了当时最优的分类效果&#xff0c;其研究成果是Transformer完全替代标准卷积的首次尝试。随着谷歌提出ViT之后&#…

Python 全栈体系【四阶】(四十五)

第五章 深度学习 十、生成对抗网络&#xff08;GAN&#xff09; 1. 图像生成技术概述 1.1 什么是图像生成技术 图像生成技术是指利用机器学习或深度学习等人工智能技术&#xff0c;通过训练模型来生成逼真的图像。这些技术可以根据给定的输入&#xff0c;生成与真实图像相似…

反序列化漏洞【1】

1.不安全的反序列化漏洞介绍 序列化&#xff1a;将对象转换成字符串&#xff0c;目的是方便传输&#xff0c;关键词serialize a代表数组&#xff0c;数组里有三个元素&#xff0c;第一个元素下标为0&#xff0c;长度为7&#xff0c;内容为porsche&#xff1b;第二个元素下标为1…

GPT-4o API 全新版本发布:提升性能,增加性价比

5月13日&#xff0c;OpenAI 发布了全新ChatGPT模型 GPT-4o&#xff0c;它在响应速度和多媒体理解上都有显著提升。在这篇文章中&#xff0c;我们将介绍 GPT-4o 的主要特点及其 API 集成方式。 什么是 GPT-4o&#xff1f; GPT-4o 是 OpenAI 于5月13日发布的最新多模态 AI 模型…

【简单介绍下在Ubuntu中如何设置中文输入法】

&#x1f308;个人主页: 程序员不想敲代码啊 &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共…

国产化数据库_金仓_Linux版Docker版部署过程及简单使用

国产化数据库金仓Linux版部署过程 文档参考&#xff1a;https://help.kingbase.com.cn/v8/install-updata/install-linux/install-linux-3.html#id12 以下安装是在Centos7系统下进行 0.安装包准备 找到你的操作系统对应的平台所支持的软件包下载&#xff0c;我这里下载的是x…

react的多级路由定义

在写实验室项目的时候&#xff0c;有一个需求&#xff0c;在二级路由页面点击按钮&#xff0c;跳转到详情列表页面&#xff0c;同时三级路由不用在导航栏显示&#xff0c;效果图如下&#xff1a; 前期的尝试&#xff1a; 在route,js文件这样定义的&#xff1a; {path: music,…

mysql权限体系

提示&#xff1a;根据课程视频总结知识点------2024.05.15 文章目录 权限处理逻辑1、 能不能连接2、能不能执行操作 权限授予与回收1、创建用户2、授予权限3、查看权限4、回收权限5、 权限级别 账户安全管理1、用户权限设定原则2、历史文件泄密 用户权限设定原则1. 只读用户--数…

哈希表+DFS快速解决力扣129题:求根节点到叶节点数字之和

❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容&#xff0c;和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣&#xff01; 推荐&#xff1a;数据分析螺丝钉的首页 格物致知 终身学习 期待您的关注 导航&#xff1a; LeetCode解锁100…

平均工资数据分析之回归

链接: R语言实战——中国职工平均工资的变化分析——相关与回归分析 1、模型诊断和评估的方法 1. 残差分析 1、残差图 (Residual Plot)&#xff1a;用于检查残差是否存在非随机模式。理想情况下&#xff0c;残差应随机分布在零附近。 2、Q-Q 图 (Quantile-Quantile Plot)&am…

【liunx】yumvim

目录 Linux 软件包管理器 yum 关于 rzsz 注意事项 查看软件包 Linux开发工具 Linux编辑器-vim使用 vim的基本概念 vim的基本操作 vim正常模式命令集 vim末行模式命令集 简单vim配置 配置文件的位置 sudo提权 Linux 软件包管理器 yum 1.yum是什么&#xff1…

【前端】CSS基础(4)

文章目录 前言1、CSS常用属性1.1 文本属性1.1.1 文本对齐1.1.2 文本装饰1.1.3 文本缩进1.1.5 行高 前言 这篇博客仅仅是对CSS的基本结构进行了一些说明&#xff0c;关于CSS的更多讲解以及HTML、Javascript部分的讲解可以关注一下下面的专栏&#xff0c;会持续更新的。 链接&…

Day_5

1. Apache ECharts Apache ECharts 是一款基于 Javascript 的数据可视化图表库&#xff0c;提供直观&#xff0c;生动&#xff0c;可交互&#xff0c;可个性化定制的数据可视化图表 官网地址&#xff1a;https://echarts.apache.org/zh/index.html 入门案例 快速入门&#x…

企业计算机服务器中了faust勒索病毒如何处理,faust勒索病毒解密恢复

随着网络技术的不断发展与应用&#xff0c;越来越多的企业利用网络走向了数字化办公模式&#xff0c;网络也极大地方便了企业生产运营&#xff0c;大大提高了企业生产效率&#xff0c;但对于众多企业来说&#xff0c;企业的数据安全一直是大家关心的主要话题&#xff0c;保护好…

fastjson2使用

说明&#xff1a;fastjson2是一个性能极致并且简单易用的Java JSON库&#xff08;官方语&#xff09;&#xff0c;本文介绍在Spring Boot项目中如何使用fastjson2。 创建项目 首先&#xff0c;创建一个Maven项目&#xff0c;引入fastjson2依赖&#xff0c;如下&#xff1a; …

战网国际服注册教程 暴雪战网国际服账号注册一站式教程分享

战网国际版&#xff0c;也即Battle.net环球版&#xff0c;是由暴雪娱乐操刀的全球化游戏交流枢纽&#xff0c;它突破地理限制&#xff0c;拥抱全世界的游戏玩家。与仅限特定地区的版本不同&#xff0c;国际版为玩家开辟了无障碍通道&#xff0c;让他们得以自由探索暴雪庞大游戏…

如何使用JMeter测试导入接口/导出接口?

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 关注公众号&#xff1a;互联网杂货铺&#xff0c;回复1 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 今天上班&#xff0c;被开发问了一个问题&#xff1a;JM…

最小质数对-第12届蓝桥杯国赛Python真题解析

[导读]&#xff1a;超平老师的Scratch蓝桥杯真题解读系列在推出之后&#xff0c;受到了广大老师和家长的好评&#xff0c;非常感谢各位的认可和厚爱。作为回馈&#xff0c;超平老师计划推出《Python蓝桥杯真题解析100讲》&#xff0c;这是解读系列的第63讲。 最小质数对&#…