LATR:3D Lane Detection from Monocular Images with Transformer

参考代码:LATR

动机与主要工作:
之前的3D车道线检测算法使用诸如IPM投影、3D anchor加NMS后处理等操作处理车道线检测,但这些操作或多或少会存在一些负面效应。IPM投影对深度估计和相机内外参数精度有要求,anchor的方式需要一些如NMS的后处理辅助。这篇文章主要的贡献有两点:

  • 1)针对车道线的特性基于DETR目标检测算法提出了一种基于landline query的检测方法,为了使得query的初始化更合理借鉴了SparseInst方法从2D图像域中用不同实例来初始化query,并且建立车道线query的粒度不是车道线级别而是具体到了车道线上的点。
  • 2)用图像特征作为key和val是较难去学习其中的3D信息的,在相机内外参数已知情况下构建一个可学习的3D空间位置编码,通过decoder中多轮迭代和与图像特征融合预测残差方式,不断修正3D空间位置编码。

检测器的结构:
这篇文章的方法流程见下图所示:
在这里插入图片描述
可以从上图中看到backbone出来之后接一个车道线实例预测网络,由此实现lane query生成和初始化。对于图像特征使用3D信息嵌入的位置编码,只不过这个位置编码是在给定一个的初始化基础上修正而来的,也就是说在transformer解码的过程中这个位置编码的值是动态的。

车道线query构建:
这部分参考SparseInst中对于inst feature的构建过程,具体可以去查阅对应的论文,由此可以得到车道线query的特征表达 Q l a n e ∈ R N ∗ C Q_{lane}\in R^{N*C} QlaneRNC(这里是从特征图尺寸最大的那个特征上得到的)。而对于车道线来说,其是由多个点组成的,那么还需要对上面的点构建query,这里通过设定可学习的参数来实现 Q ∈ R M ∗ C Q_{}\in R^{M*C} QRMC。那么接下来就是使用broadcast机制实现最后车道线的query构建 Q ∈ R ( N ∗ M ) ∗ C Q\in R^{(N*M)*C} QR(NM)C

实例+点query的形式效果才是最好的:
在这里插入图片描述

图像feature的位置编码:
这里关注的是自动驾驶场景下的车道线,则根据车道线的分布特点可以为对应2D图像特征设置位置编码。这里的位置编码是首先在3D空间中进行采样(也就是文章定义的3D地平面),之后通过相机内外参数投影到图像中,以此来作为对应图像位置处的3D位置来源。只不过这里的3D地平面是动态更新的,在transformer的不同层中会预测不同的更新残差,定义的残差变量有旋转角度和平面高度,则上一轮的平面点会使用下面的矩阵进行更新:
在这里插入图片描述

则在原本不准确的3D平面上就可以通过自适应回归的方式优化3D地平面,由此实现特征3D位置编码的优化,地平面的约束使用过车道线上的点投影建立起来的,也就是使得下图中的绿色平面与红色的车道线接近。不过截止10.09.2023这部分的代码并没有开放出来。下图展示了地平面会随着迭代的进行收敛到实际车道线的位置上:
在这里插入图片描述
分析位置编码的作用,首先看位置编码带来的性能提升:
在这里插入图片描述

从上表可以看到位置编码确实能带来性能的提升,无论是视锥还是固定平面编码,只不过这里动态平面编码的方式更加适合车道线,因而相比起来有1个点的提升。这里说明准确的位置编码有助于得到更好的检测性能,而且文章提出的平面优化自由度只有2个,更多的维度是否能更好呢?

车道线query+位置编码两者对检测性能的影响:
在这里插入图片描述

对于后面车道线的解码部分就跟传统的DETR一致了,这里就不做展开。

不同数据集下的性能表现:
OpenLane validation:
在这里插入图片描述
OpenLane不同天气条件下的表现
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/99685.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringCloud学习笔记-Ribbon负载均衡

目录 1.负载均衡策略2.自定义负载均衡策略3.饥饿加载 SpringCloudRibbon的底层采用了一个拦截器,拦截了RestTemplate发出的请求,对地址做了修改。用一幅图来总结一下: 基本流程如下: 拦截我们的RestTemplate请求http://userserv…

增强LLM:使用搜索引擎缓解大模型幻觉问题

论文题目:FRESHLLMS:REFRESHING LARGE LANGUAGE MODELS WITH SEARCH ENGINE AUGMENTATION 论文地址:https://arxiv.org/pdf/2310.03214.pdf 论文由Google、University of Massachusetts Amherst、OpenAI联合发布。 大部分大语言模型只会训练一次&#…

毛玻璃 has 选择器卡片悬停效果

效果展示 页面结构 从上述的效果展示可以看到&#xff0c;页面是由多个卡片组成&#xff0c;并且鼠标悬停在卡片上时&#xff0c;会旋转用户图片并且韩式对应的用户信息框。 CSS3 知识点 :has 属性的运用 实现页面整体结构 <div class"container"><div…

linux | linux扩大磁盘空间 | centos7.9 | 虚拟机

注意&#xff1a;可以完全参考下面这边博客&#xff08;我只是搬运工&#xff09; centos扩大磁盘空间 简单讲讲&#xff0c;为什么有点失落落的&#xff1f; 明明就是一个 很程序化的东西 可是网上一大推 天花乱坠 而且很多人都是半吊子水&#xff0c;甚至半吊子都没有 通过关…

Ubuntu16.04apt更新失败

先设置网络设置 换成nat、桥接&#xff0c;如果发现都不行&#xff0c;那么就继续下面操作 1.如果出现一开始就e&#xff0c;检查源&#xff0c;先换源 2.换完源成功之后&#xff0c;ping网络&#xff0c;如果ping不通就是网络问题 如果ping baidu.com ping不通但是ping 112…

[网鼎杯 2018]Comment git泄露 / 恢复 二次注入 bash_history文件查看

首先我们看到账号密码有提示了 我们bp爆破一下 我首先对数字爆破 因为全字符的话太多了 爆出来了哦 所以账号密码也出来了 zhangwei zhangwei666 没有什么用啊 扫一下吧 有git git泄露 那泄露看看 真有 <?php include "mysql.php"; session_start(); if(…

leetCode 53.最大子数组和 动态规划 + 优化空间复杂度

关于此题我的往期文章&#xff1a; leetCode 53.最大子数和 图解 贪心算法/动态规划优化_呵呵哒(&#xffe3;▽&#xffe3;)"的博客-CSDN博客https://heheda.blog.csdn.net/article/details/13349726853. 最大子数组和 - 力扣&#xff08;LeetCode&#xff09; >&…

NSA 和 CISA 揭示十大网络安全错误配置

美国国家安全局 (NSA) 和网络安全与基础设施安全局 (CISA) 在5日公布了其红蓝团队在大型组织网络中发现的十大最常见的网络安全错误配置。 通报还详细介绍了威胁行为者使用哪些策略、技术和程序 (TTP) 来成功利用这些错误配置来实现各种目标&#xff0c;包括获取访问权限、横向…

40V汽车级P沟道MOSFET SQ4401EY-T1_GE3 工作原理、特性参数、封装形式—节省PCB空间,更可靠

AEC-Q101车规认证是一种基于失效机制的分立半导体应用测试认证规范。它是为了确保在汽车领域使用的分立半导体器件能够在严苛的环境条件下正常运行和长期可靠性而制定的。AEC-Q101认证包括一系列的失效机制和应力测试&#xff0c;以验证器件在高温、湿度、振动等恶劣条件下的可…

设计模式 - 行为型模式:责任链模式(概述 | 案例实现 | 优缺点 | 使用场景)

目录 一、行为型模式 1.1、责任链模式 1.1.1、概述 1.1.2、案例实现 1.1.3、优缺点 1.1.4、使用场景 一、行为型模式 1.1、责任链模式 1.1.1、概述 为了避免请求发送者和多个请求处理者耦合在一起&#xff0c;就将所有请求处理者通过前一个对象记住下一个对象的引用的方…

uniapp apple 苹果登录 离线本地打包

官方文档 uni-app官网 文档写的不全&#xff0c;没有写离线打包流程 加lib 签名里带 sign in with apple hbuilder开关 代码 测试代码&#xff0c;获取app里所有的provider uni.getProvider({service: oauth,success: function (res) {console.log(res.provider)uni.showT…

【HTML5】语义化标签记录

前言 防止一个页面中全部都是div&#xff0c;或者ul li&#xff0c;在html5推出了很多语义化标签 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 常用语义化案例 一般我用的多的是header&#xff0c;main&#xff0c;footer 这些标签不难理解&#x…

2023年中国助消化药物行业现状分析:消化不良患者逐年上升,提升需求量[图]

助消化药物主要分为促胃动力药物、消化酶抑制剂、胃酸抑制药物和消食剂4种类型。促胃动力药物的作用机制是通过增强胃肠道平滑肌动力促进胃酸分泌&#xff0c;从而达到助消化的目的&#xff0c;临床常用药物包括多潘立酮、莫沙必利、西沙比利等。 助消化药物分类 资料来源&…

Observability:使用 OpenTelemetry 对 Node.js 应用程序进行自动检测

作者&#xff1a;Bahubali Shetti DevOps 和 SRE 团队正在改变软件开发的流程。 DevOps 工程师专注于高效的软件应用程序和服务交付&#xff0c;而 SRE 团队是确保可靠性、可扩展性和性能的关键。 这些团队必须依赖全栈可观察性解决方案&#xff0c;使他们能够管理和监控系统&a…

Django开发之进阶篇

Django进阶篇 一、Django学习之模板二、Django学习之中间件默认中间件自定义中间件 三、Django学习之ORM定义模型类生成数据库表操作数据库添加查询修改删除 一、Django学习之模板 在 Django 中&#xff0c;模板&#xff08;Template&#xff09;是用于生成动态 HTML&#xff…

自动拟人对话机器人在客户服务方面起了什么作用?

在当今数字时代&#xff0c;企业不断寻求创新的方法来提升客户服务体验。随着科技的不断进步和消费者期望的提升&#xff0c;传统的客户服务方式逐渐无法满足现代消费者的需求。因此&#xff0c;许多企业正在积极探索利用新兴技术来改进客户服务&#xff0c;自动拟人对话机器人…

阿里云轻量应用服务器流量价格表(计费/免费说明)

阿里云轻量应用服务器套餐有的限制月流量&#xff0c;有的不限制月流量&#xff0c;限制每月流量的套餐&#xff0c;如果自带的免费月流量包用完了&#xff0c;流量超额部分需要另外支付流量费&#xff0c;阿里云百科aliyunbaike.com分享阿里云轻量应用服务器月流量超额收费价格…

phpstorm不提示$this->request,不提示Controller父类的方法

![在这里插入图片描述](https://img-blog.csdnimg.cn/d55799a22b724099930eb7fb67260a12.png 最后 保存就可以了

浅谈风力发电场集中监控系统解决方案

作为清洁能源之一&#xff0c;风力发电场近几年装机容量快速增长。8月17日&#xff0c;国家能源局发布1-7月份全国电力工业统计数据。截至7月底&#xff0c;全国累计发电装机容量约27.4亿千瓦&#xff0c;同比增长11.5%。其中&#xff0c;太阳能发电装机容量约4.9亿千瓦&#x…