竞赛选题 机器学习股票大数据量化分析与预测系统 - python 竞赛选题

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
    • UI界面设计
    • web预测界面
    • RSRS选股界面
  • 3 软件架构
  • 4 工具介绍
    • Flask框架
    • MySQL数据库
    • LSTM
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 机器学习股票大数据量化分析与预测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

基于机器学习的股票大数据量化分析系统,具有以下功能:

  • 采集保存数据;
  • 分析数据;
  • 可视化;
  • 深度学习股票预测

2 实现效果

UI界面设计

功能简述

在这里插入图片描述

日常数据获取更新

在这里插入图片描述
交易功能
在这里插入图片描述

web预测界面

  • LSTM长时间序列预测
  • RNN预测
  • 机器学习预测
  • 股票指标分析

在这里插入图片描述

预测效果如下:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

RSRS选股界面

在这里插入图片描述

3 软件架构

整体的软件功能结构如下图

在这里插入图片描述

4 工具介绍

Flask框架

简介

Flask是一个基于Werkzeug和Jinja2的轻量级Web应用程序框架。与其他同类型框架相比,Flask的灵活性、轻便性和安全性更高,而且容易上手,它可以与MVC模式很好地结合进行开发。Flask也有强大的定制性,开发者可以依据实际需要增加相应的功能,在实现丰富的功能和扩展的同时能够保证核心功能的简单。Flask丰富的插件库能够让用户实现网站定制的个性化,从而开发出功能强大的网站。

本项目在Flask开发后端时,前端请求会遇到跨域的问题,解决该问题有修改数据类型为jsonp,采用GET方法,或者在Flask端加上响应头等方式,在此使用安装Flask-
CORS库的方式解决跨域问题。此外需要安装请求库axios。

Flask框架图

在这里插入图片描述
代码实例

from flask import Flask, render_template, jsonifyimport requestsfrom bs4 import BeautifulSoupfrom snownlp import SnowNLPimport jiebaimport numpy as npapp = Flask(__name__)app.config.from_object('config')# 中文停用词STOPWORDS = set(map(lambda x: x.strip(), open(r'./stopwords.txt', encoding='utf8').readlines()))headers = {'accept': "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9",'accept-language': "en-US,en;q=0.9,zh-CN;q=0.8,zh-TW;q=0.7,zh;q=0.6",'cookie': 'll="108296"; bid=ieDyF9S_Pvo; __utma=30149280.1219785301.1576592769.1576592769.1576592769.1; __utmc=30149280; __utmz=30149280.1576592769.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); _vwo_uuid_v2=DF618B52A6E9245858190AA370A98D7E4|0b4d39fcf413bf2c3e364ddad81e6a76; ct=y; dbcl2="40219042:K/CjqllYI3Y"; ck=FsDX; push_noty_num=0; push_doumail_num=0; douban-fav-remind=1; ap_v=0,6.0','host': "search.douban.com",'referer': "https://movie.douban.com/",'sec-fetch-mode': "navigate",'sec-fetch-site': "same-site",'sec-fetch-user': "?1",'upgrade-insecure-requests': "1",'user-agent': "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36 Edg/79.0.309.56"}login_name = None# --------------------- html render ---------------------@app.route('/')def index():return render_template('index.html')@app.route('/search')def search():return render_template('search.html')@app.route('/search/')def search2(movie_name):return render_template('search.html')

MySQL数据库

简介

MySQL是一个关系型数据库,由瑞典MySQL AB公司开发,目前已经被Oracle收购。

Mysql是一个真正的多用户、多线程的SQL数据库。其使用的SQL(结构化查询语言)是世界上最流行的和标准化的数据库语言,每个关系型数据库都可以使用MySQL是以客户机/服务器结构实现的,也就是俗称的C/S结构,它由一个服务器守护程序mysqld和很多不同的客户程序和库组成。

Python操作mysql数据库

本项目中我们需要使用python来操作mysql数据库,因此需要用到 pymysql 这个库

安装:


pip install pymysql

数据库连接实例:


# 导入pymysql
import pymysql

# 定义一个函数
# 这个函数用来创建连接(连接数据库用)
def mysql_db():# 连接数据库肯定需要一些参数conn = pymysql.connect(host="127.0.0.1",port=3307,database="ksh",charset="utf8",user="root",passwd="123456")if __name__ == '__main__':mysql_db()

数据库连接实例:


# 导入pymysql
import pymysql

# 定义一个函数
# 这个函数用来创建连接(连接数据库用)
def mysql_db():# 连接数据库肯定需要一些参数conn = pymysql.connect(host="127.0.0.1",port=3307,database="ksh",charset="utf8",user="root",passwd="123456")if __name__ == '__main__':mysql_db()

LSTM

简介

长短期记忆(Long short-term memory,
LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。

LSTM结构(图右)和普通RNN的主要输入输出区别如下所示。
在这里插入图片描述
在这里插入图片描述
Torch代码实现


import torch
from sklearn.metrics import accuracy_score

#定义需要的模型结构,继承自torch.nn.Module
#必须包含__init__和forward两个功能
class mylstm(torch.nn.Module):def __init__(self, lstm_input_size, lstm_hidden_size, lstm_batch, lstm_layers):# 声明继承关系super(mylstm, self).__init__()self.lstm_input_size, self.lstm_hidden_size = lstm_input_size, lstm_hidden_sizeself.lstm_layers, self.lstm_batch = lstm_layers, lstm_batch# 定义lstm层self.lstm_layer = torch.nn.LSTM(self.lstm_input_size, self.lstm_hidden_size, num_layers=self.lstm_layers, batch_first=True)# 定义全连接层 二分类self.out = torch.nn.Linear(self.lstm_hidden_size, 2)def forward(self, x):# 激活x = torch.sigmoid(x)# LSTMx, _ = self.lstm_layer(x)# 保留最后一步的输出x = x[:, -1, :]# 全连接x = self.out(x)return xdef init_hidden(self):#初始化隐藏层参数全0return torch.zeros(self.lstm_batch, self.lstm_hidden_size)

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/97752.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AIGC AI绘画 Midjourney 的详细使用手册

Midjourney参数提示与用法。 常见的命令有: --seed:种子值 --q:品质 --c:混乱 --no:负面提示 --iw:权重(0.5-2) ::(多重提示) -- repeat(重复) --stop(停止) --title(无缝贴图:适用于模型版本 1、2、3、5) --video(过程动画,适用于模型版本 1、2…

阅读文献小技巧

在科研中,文献的阅读是非常重要的一环。对于汇报论文的文献阅读,更是需要有一定的技巧。下面列出一些阅读汇报论文文献的技巧。 1.明确阅读目的和任务。在阅读每篇文献之前,需要明确阅读该文献的目的和任务,例如是否需要了解该领域的最新进展、寻找相关数据或案例等。是为…

动态内存管理函数(malloc,calloc,realloc,free)

动态内存函数 1.1malloc和free C语言提供了一个动态内存开辟的函数: void* malloc (size_t size); 这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。 如果开辟成功,则返回一个指向开辟好空间的指针。如果开辟失败&#…

开源大模型正在“杀死”闭源?

点击关注 文丨郝 鑫,编丨刘雨琦 “OpenAI不足为惧,开源会慢慢赶上来。” 彼时Hugging Face创始人Clem Delangue的一句预言,正在迅速成为现实。 ChatGPT横空出世7个多月后,7月19日,Llama 2宣布开源,并且可…

day25--JS进阶(递归函数,深浅拷贝,异常处理,改变this指向,防抖及节流)

目录 浅拷贝 1.拷贝对象①Object.assgin() ②展开运算符newObj {...obj}拷贝对象 2.拷贝数组 ①Array.prototype.concat() ② newArr [...arr] 深拷贝 1.通过递归实现深拷贝 2.lodash/cloneDeep实现 3.通过JSON.stringify()实现 异常处理 throw抛异常 try/catch捕获…

Linux读写锁的容易犯的问题

Linux读写锁的容易犯的问题 读写锁是互斥锁之外的另一种用于多线程之间同步的一种方式。 多线程对于一个共享变量的读操作是安全的, 而写操作是不安全的。如果在一个读很多而写很少的场景之下,那么使用互斥锁将会阻碍大量的线程安全的读操作的进行。在…

地震勘探——相关概念(一)

地震波的基本介绍 波前:波在同一时刻所到达的点所构成的面,这个面上构成的相位是相同的。波前的形状取决于传播介质的物理性质。我们可以用地震波动方程模拟波前变化(波场快照)。 射线(Ray):是…

介绍他人投资并出具欠条,介绍人是否承担责任?

为投资项目赚取分红,经熟人介绍投资某公司分红项目后,未获得约定的收益,无奈之下,投资人起诉介绍人要求其还款,法院会如何判?   2023年4月,原告徐某、杨某通过被告曹某介绍,投资河…

Unity Golang教程-Shader编写一个流动的云效果

创建目录 一个友好的项目,项目目录结构是很重要的。我们先导入一个登录界面模型资源。 我们先创建Art表示是美术类的资源,资源是模型创建Model文件夹,由于是在登录界面所以创建Login文件夹,下面依次是模型对应的资源&#xff0c…

【SkyWalking】SkyWalking是如何实现跨进程传播链路数据?

文章目录 一、简介1 为什么写这篇文章2 跨进程传播协议-简介 二、协议1 Standard Header项2 Extension Header项3 Correlation Header项 三、跨进程传播协议的源码分析1 OpenTracing规范2 通过dubbo插件分析跨进程数据传播3 分析跨进程传播协议的核心源码 四、小结参考 一、简介…

C++变量默认初始化

初始化不是赋值,初始化是指创建变量时赋予一个初始值,赋值是指将变量的当前值擦除,赋予新值。 如果定义变量时没有初始化,则变量会被系统默认初始化。“默认值”取决于变量的:类型位置 startmindmap * C变量默认初始…

对于无法直接获取URL的数据爬虫

在爬学校安全教育题库的时候发现题库分页实际上执行了一段js代码,如下图所示 点击下一页时是执行了函数doPostBack,查看页面源码如下 点击下一页后这段js提交了一个表单,随后后端返回对应数据,一开始尝试分析获取对应两个参数&a…

【虚拟机】桥接模式下访问外网

目录 一、桥接模式的作用原理 二、配置桥接模式实现外网访问 1、设置 VMnet0 要桥接的网卡 2、虚拟机选择 VMnet0 网卡 3、手动配置虚拟机IP 一、桥接模式的作用原理 桥接模式相当于在当前局域网里创立了一个单独的主机,该主机桥接到宿主主机的网卡&#xff0…

简易的贪吃蛇小游戏(以后或许会更新)C++/C语言

第一版&#xff1a; #include <stdio.h> #include <conio.h> #include <stdlib.h> #include <windows.h>#define WIDTH 20 #define HEIGHT 20int gameOver; int score; int x, y; // 蛇头的坐标 int fruitX, fruitY; // 食物的坐标 int tailX[100], t…

细粒度特征提取和定位用于目标检测:PPCNN

1、简介 近年来&#xff0c;深度卷积神经网络在计算机视觉上取得了优异的性能。深度卷积神经网络以精确地分类目标信息而闻名&#xff0c;并采用了简单的卷积体系结构来降低图层的复杂性。基于深度卷积神经网络概念设计的VGG网络。VGGNet在对大规模图像进行分类方面取得了巨大…

uCOSIII实时操作系统 三 移植

目录 uCOSIII简介&#xff1a; 准备工作&#xff1a; 准备基础工程&#xff1a; UCOSIII工程源码&#xff1a; UCOSIII移植&#xff1a; 向基础工程中添加相应的文件夹 向工程中添加分组 常见问题&#xff1a; 下载验证&#xff1a; uCOSIII简介&#xff1a; UCOS-I…

SpringBoot配置kafka

server:port: 8080 spring:kafka:bootstrap-servers: 192.168.79.104:9092producer: # 生产者retries: 3 # 设置大于 0 的值&#xff0c;则客户端会将发送失败的记录重新发送batch-size: 16384buffer-memory: 33554432acks: 1# 指定消息key和消息体的编解码方式key-serializer:…

【Nginx学习】—Nginx基本知识

【Nginx学习】—Nginx基本知识 一、什么是Nginx Nginx是一个高性能的HTTP和反向代理的web服务器&#xff0c;Nginx是一款轻量级的Web服务器/反向代理服务器处理高并发能力是十分强大的&#xff0c;并且支持热部署&#xff0c;启动简单&#xff0c;可以做到7*24不间断运行。 …

【ringbuff share mem】

ringbuff 和share mem 结合实现PV操作 参考链接 https://juejin.cn/post/7113550346835722276 https://zhuanlan.zhihu.com/p/147826545 代码如下&#xff1a; #include "rb.h"int g_shmid 0;shm_buff * create_shm(int *smid) {int id;shm_buff *share_mem NU…

SketchyCOCO数据集进行前景图像、背景图像和全景图像的分类

SketchyCOCO数据集进行前景图像、背景图像和全景图像的分类 import os import shutildef CopyFile(src, dst, filename):if not os.path.exists(dst):os.makedirs(dst)print(create dir: dst)try:shutil.copy(src\\filename, dst\\filename)except Exception as e:print(cop…