细粒度特征提取和定位用于目标检测:PPCNN

图片

1、简介

近年来,深度卷积神经网络在计算机视觉上取得了优异的性能。深度卷积神经网络以精确地分类目标信息而闻名,并采用了简单的卷积体系结构来降低图层的复杂性。基于深度卷积神经网络概念设计的VGG网络。VGGNet在对大规模图像进行分类方面取得了巨大的性能。该网络设计了一堆小卷积滤波器,使网络结构非常简单,但网络有一些定位错误。

图片

就有研究者提出了独特的网络架构,PPCNN(金字塔池化卷积神经网络),以减少定位误差,并提取高级特征图。该网络由改进的VGGNet和U-shape特征金字塔网络组成。介绍了一种提取和收集目标的小特征信息并从源图像中检测小物体的网络。该方法在定位和检测任务中取得了更高的精度。

二、背景

Facebook的特征金字塔网络Feature Pyramid Networks(FPN)。FPN主要解决的是物体检测中的多尺度问题,通过简单的网络连接改变,在基本不增加原有模型计算量情况下,大幅度提升了小物体检测的性能。我们将从论文背景,论文思想,结果与结论几方面探讨此论文。

在物体检测里面,有限计算量情况下,网络的深度(对应到感受野)与stride通常是一对矛盾的东西,常用的网络结构对应的stride一般会比较大(如32),而图像中的小物体甚至会小于stride的大小,造成的结果就是小物体的检测性能急剧下降。传统解决这个问题的思路包括:

  • 多尺度训练和测试,又称图像金字塔,如图1(a)所示。目前几乎所有在ImageNet和COCO检测任务上取得好成绩的方法都使用了图像金字塔方法。然而这样的方法由于很高的时间及计算量消耗,难以在实际中应用。

  • 特征分层,即每层分别预测对应的scale分辨率的检测结果。如图1(c)所示。SSD检测框架采用了类似的思想。这样的方法问题在于直接强行让不同层学习同样的语义信息。而对于卷积神经网络而言,不同深度对应着不同层次的语义特征,浅层网络分辨率高,学的更多是细节特征,深层网络分辨率低,学的更多是语义特征。

图片

因而,目前多尺度的物体检测主要面临的挑战为:

  • 如何学习具有强语义信息的多尺度特征表示?

  • 如何设计通用的特征表示来解决物体检测中的多个子问题?如object proposal, box localization, instance segmentation.

  • 如何高效计算多尺度的特征表示?

针对这些问题,提出了特征金字塔网络FPN,如上图(d)所示,网络直接在原来的单网络上做修改,每个分辨率的feature map引入后一分辨率缩放两倍的feature map做element-wise相加的操作。通过这样的连接,每一层预测所用的feature map都融合了不同分辨率、不同语义强度的特征,融合的不同分辨率的feature map分别做对应分辨率大小的物体检测。这样保证了每一层都有合适的分辨率以及强语义特征。同时,由于此方法只是在原网络基础上加上了额外的跨层连接,在实际应用中几乎不增加额外的时间和计算量。将FPN应用在Faster RCNN上的性能,在COCO上达到了state-of-the-art的单模型精度。

图片

具体而言,FPN分别在RPN和Fast RCNN两步中起到作用。其中RPN和Fast RCNN分别关注的是召回率和正检率,在这里对比的指标分别为Average Recall(AR)和Average Precision(AP)。分别对比了不同尺度物体检测情况,小中大物体分别用s,m,l表示。

在RPN中,区别于原论文直接在最后的feature map上设置不同尺度和比例的anchor,本文的尺度信息对应于相应的feature map(分别设置面积为32^2, 64^2, 128^2, 256^2, 512^2),比例用类似于原来的方式设置{1:2, 1:1,, 2:1}三种。

与RPN一样,FPN每层feature map加入3*3的卷积及两个相邻的1*1卷积分别做分类和回归的预测。在RPN中,实验对比了FPN不同层feature map卷积参数共享与否,发现共享仍然能达到很好性能,说明特征金字塔使得不同层学到了相同层次的语义特征。

三、PPCNN

图片

金字塔池化网络允许从不同卷积层中的多尺度特征作为输入,并提取相同尺度的输出特征图,如上图所示。研究者提出了用VGGNet在u-shape特征金字塔网络中构建的改进的网络架构来提取高级特征图。该特征金字塔网络的特征提取过程如下图所示。

图片

四、实验

图片

图片

可视化结果

图片

Experimental results of conventional VGG network and proposed PPCNN (VGG network with u-shape feature pyramid network) on MS COCO dataset. The top row contains results of the conventional VGG network, and the bottom row contains the detection results of the proposed network.

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/97735.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uCOSIII实时操作系统 三 移植

目录 uCOSIII简介: 准备工作: 准备基础工程: UCOSIII工程源码: UCOSIII移植: 向基础工程中添加相应的文件夹 向工程中添加分组 常见问题: 下载验证: uCOSIII简介: UCOS-I…

SpringBoot配置kafka

server:port: 8080 spring:kafka:bootstrap-servers: 192.168.79.104:9092producer: # 生产者retries: 3 # 设置大于 0 的值,则客户端会将发送失败的记录重新发送batch-size: 16384buffer-memory: 33554432acks: 1# 指定消息key和消息体的编解码方式key-serializer:…

【Nginx学习】—Nginx基本知识

【Nginx学习】—Nginx基本知识 一、什么是Nginx Nginx是一个高性能的HTTP和反向代理的web服务器,Nginx是一款轻量级的Web服务器/反向代理服务器处理高并发能力是十分强大的,并且支持热部署,启动简单,可以做到7*24不间断运行。 …

【ringbuff share mem】

ringbuff 和share mem 结合实现PV操作 参考链接 https://juejin.cn/post/7113550346835722276 https://zhuanlan.zhihu.com/p/147826545 代码如下: #include "rb.h"int g_shmid 0;shm_buff * create_shm(int *smid) {int id;shm_buff *share_mem NU…

SketchyCOCO数据集进行前景图像、背景图像和全景图像的分类

SketchyCOCO数据集进行前景图像、背景图像和全景图像的分类 import os import shutildef CopyFile(src, dst, filename):if not os.path.exists(dst):os.makedirs(dst)print(create dir: dst)try:shutil.copy(src\\filename, dst\\filename)except Exception as e:print(cop…

计算机网络-计算机网络体系结构-物理层

目录 一、通信基础 通信方式 传输方式 码元 传输率 *二 准则 2.1奈氏准则(奈奎斯特定理) 2.2香农定理 三、信号的编码和调制 *数字数据->数字信号 数字数据->模拟信号 模拟数据->数字信号 模拟数据->模拟信号 *四、数据交换方式 电路交换 报文交换…

算法练习(11):牛客在线编程07 动态规划

package jz.bm;import javax.crypto.MacSpi; import java.util.ArrayList; import java.util.Arrays;public class bm7 {/*** BM62 斐波那契数列*/public int Fibonacci(int n) {if (n < 2) {return 1;}int[] dp new int[n 1];dp[1] 1;dp[2] 1;for (int i 3; i < n;…

kafka客户端应用参数详解

一、基本客户端收发消息 Kafka提供了非常简单的客户端API。只需要引入一个Maven依赖即可&#xff1a; <dependency><groupId>org.apache.kafka</groupId><artifactId>kafka_2.13</artifactId><version>3.4.0</version></depend…

将python项目部署在一台服务器上

将python项目部署在一台服务器上 1.服务器2.部署方法2.1 手动部署2.2 容器化技术部署2.3 服务器less技术部署 1.服务器 服务器一般为&#xff1a;物理服务器和云服务器。 我的是物理服务器&#xff1a;这是将服务器硬件直接放置在您自己的数据中心或机房的传统方法。这种方法需…

力扣 -- 516. 最长回文子序列

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:int longestPalindromeSubseq(string s) {int ns.size();vector<vector<int>> dp(n,vector<int>(n));//记得从下往上填表for(int in-1;i>0;i--){//记得i是小于等于j的for(int ji;j&l…

山体滑坡监测系统——高效、便捷的新选择

在当今社会&#xff0c;科技的进步为我们的生活和工作带来了诸多便利。而在山体滑坡监测领域&#xff0c;全球导航卫星系统&#xff08;GNSS&#xff09;的引入更是增加了数据监测的高效性和便捷性。 一、山体滑坡监测系统的基本原理 山体滑坡监测系统是由监控平台和GNSS位移…

2.6 宽带接入技术

思维导图&#xff1a; 前言&#xff1a; 我的理解&#xff1a; 1. **早期互联网接入技术的局限性**&#xff1a; - 作者首先回顾了早期用户通过电话线和调制解调器连接到互联网服务提供商&#xff08;ISP&#xff09;的方式&#xff0c;指出这种方式的速度上限是56 kbit/…

my_print_defaults 及perror

参考文档&#xff1a; https://mysql.net.cn/doc/refman/8.0/en/my-print-defaults.html https://mysql.net.cn/doc/refman/8.0/en/perror.html -- my.cnf的内容 [rootredhat762100 mysql3306]# more my.cnf [mysqld] datadir/mysql/mysql3306/data #socket/tmp/mysql3306.so…

UE5.1编辑器拓展【三、脚本化资产行为,删除无引用资产】

目录 需要考虑的问题 重定向的修复函数 代码&#xff1a; 删除无引用资产 代码 需要添加的头文件和模块 在我们删除资产的时候&#xff0c;会发现&#xff0c;有些资产在删除的时候会出现有被什么什么引用&#xff0c;还有的是没有被引用。 而我们如果直接选择一片去进行…

FFmpeg横竖版视频互换背景模糊一键生成

视频处理是现代多媒体应用中常见的需求。其中横竖版视频互换和背景模糊是视频编辑中常见的操作。FFmpeg是一个功能强大的工具,适用于这些任务。 本文将详细介绍如何使用FFmpeg进行横竖版视频互换和背景模糊。 文章目录 操作命令与命令说明横版转竖版竖版转横版背景模糊处理横…

PHP 伪协议:使用 php://input 访问原始 POST 数据

文章目录 参考环境PHP 伪协议概念为什么需要 PHP 伪协议&#xff1f; php://input为什么需要 php://input&#xff1f;更灵活的数据处理减小性能压力 发送 POST 数据HackBarHackBar 插件的获取 $_POST打开 HackBar 插件通过 HackBar 插件发起 POST 请求 基操 enable_post_data_…

ROS机械臂开发-开发环境搭建【一】

目录 前言环境配置docker搭建Ubuntu环境安装ROS 基础ROS文件系统 bugs 前言 想系统学习ROS&#xff0c;做一些机器人开发。因为有些基础了&#xff0c;这里随便写写记录一下。 环境配置 docker搭建Ubuntu环境 Dockerfile # 基础镜像 FROM ubuntu:18.04 # 设置变量 ENV ETC…

Split index API

Split index API | Elasticsearch Guide [8.10] | Elastic 当您使用Elasticsearch集群出现索引分片设置不合理&#xff08;例如索引主分片设置不合理、每个分片存在大量数据等&#xff09;引发集群性能问题时&#xff0c;可通过_split API在线扩大主分片数&#xff0c;将现有索…

[开源]基于Vue的拖拽式数据报表设计器,为简化开发提高效率而生

一、开源项目简介 Cola-Designer 是一个 基于VUE&#xff0c;实现拖拽 配置方式生成数据大屏&#xff0c;为简化开发、提高效率而生。 二、开源协议 使用GPL-2.0开源协议 三、界面展示 概览 部分截图&#xff1a; 四、功能概述 特性 0 代码 实现完全拖拽 配置式生成…

SpringBoot中常用注解的含义

一、方法参数注解 1. PathVariable 通过RequestMapping注解中的 { } 占位符来标识URL中的变量部分 在控制器中的处理方法的形参中使用PathVariable注解去获取RequestMapping中 { } 中传进来的值&#xff0c;并绑定到处理方法定一的形参上。 //请求路径&#xff1a;http://3333…