理解一致性哈希算法

摘要:一致性哈希是什么,使用场景,解决了什么问题?

本文分享自华为云社区《16 张图解 | 一致性哈希算法》,作者:小林coding。

如何分配请求?

大多数网站背后肯定不是只有一台服务器提供服务,因为单机的并发量和数据量都是有限的,所以都会用多台服务器构成集群来对外提供服务。

但是问题来了,现在有那么多个节点(后面统称服务器为节点,因为少一个字),要如何分配客户端的请求呢?

cke_129.png

其实这个问题就是「负载均衡问题」。解决负载均衡问题的算法很多,不同的负载均衡算法,对应的就是不同的分配策略,适应的业务场景也不同。

最简单的方式,引入一个中间的负载均衡层,让它将外界的请求「轮流」的转发给内部的集群。比如集群有 3 个节点,外界请求有 3 个,那么每个节点都会处理 1 个请求,达到了分配请求的目的。

cke_130.png

考虑到每个节点的硬件配置有所区别,我们可以引入权重值,将硬件配置更好的节点的权重值设高,然后根据各个节点的权重值,按照一定比重分配在不同的节点上,让硬件配置更好的节点承担更多的请求,这种算法叫做加权轮询。

加权轮询算法使用场景是建立在每个节点存储的数据都是相同的前提。所以,每次读数据的请求,访问任意一个节点都能得到结果。

但是,加权轮询算法是无法应对「分布式系统」的,因为分布式系统中,每个节点存储的数据是不同的。

当我们想提高系统的容量,就会将数据水平切分到不同的节点来存储,也就是将数据分布到了不同的节点。比如一个分布式 KV(key-valu) 缓存系统,某个 key 应该到哪个或者哪些节点上获得,应该是确定的,不是说任意访问一个节点都可以得到缓存结果的。

因此,我们要想一个能应对分布式系统的负载均衡算法。

使用哈希算法有什么问题?

有的同学可能很快就想到了:哈希算法。因为对同一个关键字进行哈希计算,每次计算都是相同的值,这样就可以将某个 key 确定到一个节点了,可以满足分布式系统的负载均衡需求。

哈希算法最简单的做法就是进行取模运算,比如分布式系统中有 3 个节点,基于 hash(key) % 3 公式对数据进行了映射。

如果客户端要获取指定 key 的数据,通过下面的公式可以定位节点:

hash(key) % 3复制

如果经过上面这个公式计算后得到的值是 0,就说明该 key 需要去第一个节点获取。

但是有一个很致命的问题,如果节点数量发生了变化,也就是在对系统做扩容或者缩容时,必须迁移改变了映射关系的数据,否则会出现查询不到数据的问题。

举个例子,假设我们有一个由 A、B、C 三个节点组成分布式 KV 缓存系统,基于计算公式 hash(key) % 3 将数据进行了映射,每个节点存储了不同的数据:

cke_131.png

现在有 3 个查询 key 的请求,分别查询 key-01,key-02,key-03 的数据,这三个 key 分别经过 hash() 函数计算后的值为 hash( key-01) = 6、hash( key-02) = 7、hash(key-03) = 8,然后再对这些值进行取模运算。

通过这样的哈希算法,每个 key 都可以定位到对应的节点。

cke_132.png

当 3 个节点不能满足业务需求了,这时我们增加了一个节点,节点的数量从 3 变化为 4,意味取模哈希函数中基数的变化,这样会导致大部分映射关系改变,如下图:

cke_133.png

比如,之前的 hash(key-01) % 3 = 0,就变成了 hash(key-01) % 4 = 2,查询 key-01 数据时,寻址到了节点 C,而 key-01 的数据是存储在节点 A 上的,不是在节点 C,所以会查询不到数据。

同样的道理,如果我们对分布式系统进行缩容,比如移除一个节点,也会因为取模哈希函数中基数的变化,可能出现查询不到数据的问题。

要解决这个问题的办法,就需要我们进行迁移数据,比如节点的数量从 3 变化为 4 时,要基于新的计算公式 hash(key) % 4 ,重新对数据和节点做映射。

假设总数据条数为 M,哈希算法在面对节点数量变化时,最坏情况下所有数据都需要迁移,所以它的数据迁移规模是 O(M),这样数据的迁移成本太高了。

所以,我们应该要重新想一个新的算法,来避免分布式系统在扩容或者缩容时,发生过多的数据迁移。

使用一致性哈希算法有什么问题?

一致性哈希算法就很好地解决了分布式系统在扩容或者缩容时,发生过多的数据迁移的问题。

一致哈希算法也用了取模运算,但与哈希算法不同的是,哈希算法是对节点的数量进行取模运算,而一致哈希算法是对 2^32 进行取模运算,是一个固定的值

我们可以把一致哈希算法是对 2^32 进行取模运算的结果值组织成一个圆环,就像钟表一样,钟表的圆可以理解成由 60 个点组成的圆,而此处我们把这个圆想象成由 2^32 个点组成的圆,这个圆环被称为哈希环,如下图:

cke_134.png

一致性哈希要进行两步哈希:

  • 第一步:对存储节点进行哈希计算,也就是对存储节点做哈希映射,比如根据节点的 IP 地址进行哈希;
  • 第二步:当对数据进行存储或访问时,对数据进行哈希映射;

所以,一致性哈希是指将「存储节点」和「数据」都映射到一个首尾相连的哈希环上

问题来了,对「数据」进行哈希映射得到一个结果要怎么找到存储该数据的节点呢?

答案是,映射的结果值往顺时针的方向的找到第一个节点,就是存储该数据的节点。

举个例子,有 3 个节点经过哈希计算,映射到了如下图的位置:

cke_135.png

接着,对要查询的 key-01 进行哈希计算,确定此 key-01 映射在哈希环的位置,然后从这个位置往顺时针的方向找到第一个节点,就是存储该 key-01 数据的节点。

比如,下图中的 key-01 映射的位置,往顺时针的方向找到第一个节点就是节点 A。

cke_136.png

所以,当需要对指定 key 的值进行读写的时候,要通过下面 2 步进行寻址:

  • 首先,对 key 进行哈希计算,确定此 key 在环上的位置;
  • 然后,从这个位置沿着顺时针方向走,遇到的第一节点就是存储 key 的节点。

知道了一致哈希寻址的方式,我们来看看,如果增加一个节点或者减少一个节点会发生大量的数据迁移吗?

假设节点数量从 3 增加到了 4,新的节点 D 经过哈希计算后映射到了下图中的位置:

cke_137.png

你可以看到,key-01、key-03 都不受影响,只有 key-02 需要被迁移节点 D。

假设节点数量从 3 减少到了 2,比如将节点 A 移除:

cke_138.png

你可以看到,key-02 和 key-03 不会受到影响,只有 key-01 需要被迁移节点 B。

因此,在一致哈希算法中,如果增加或者移除一个节点,仅影响该节点在哈希环上顺时针相邻的后继节点,其它数据也不会受到影响

上面这些图中 3 个节点映射在哈希环还是比较分散的,所以看起来请求都会「均衡」到每个节点。

但是一致性哈希算法并不保证节点能够在哈希环上分布均匀,这样就会带来一个问题,会有大量的请求集中在一个节点上。

比如,下图中 3 个节点的映射位置都在哈希环的右半边:

cke_139.png

这时候有一半以上的数据的寻址都会找节点 A,也就是访问请求主要集中的节点 A 上,这肯定不行的呀,说好的负载均衡呢,这种情况一点都不均衡。

另外,在这种节点分布不均匀的情况下,进行容灾与扩容时,哈希环上的相邻节点容易受到过大影响,容易发生雪崩式的连锁反应。

比如,上图中如果节点 A 被移除了,当节点 A 宕机后,根据一致性哈希算法的规则,其上数据应该全部迁移到相邻的节点 B 上,这样,节点 B 的数据量、访问量都会迅速增加很多倍,一旦新增的压力超过了节点 B 的处理能力上限,就会导致节点 B 崩溃,进而形成雪崩式的连锁反应。

所以,一致性哈希算法虽然减少了数据迁移量,但是存在节点分布不均匀的问题

如何通过虚拟节点提高均衡度?

要想解决节点能在哈希环上分配不均匀的问题,就是要有大量的节点,节点数越多,哈希环上的节点分布的就越均匀。

但问题是,实际中我们没有那么多节点。所以这个时候我们就加入虚拟节点,也就是对一个真实节点做多个副本。

具体做法是,不再将真实节点映射到哈希环上,而是将虚拟节点映射到哈希环上,并将虚拟节点映射到实际节点,所以这里有「两层」映射关系。

比如对每个节点分别设置 3 个虚拟节点:

  • 对节点 A 加上编号来作为虚拟节点:A-01、A-02、A-03
  • 对节点 B 加上编号来作为虚拟节点:B-01、B-02、B-03
  • 对节点 C 加上编号来作为虚拟节点:C-01、C-02、C-03

引入虚拟节点后,原本哈希环上只有 3 个节点的情况,就会变成有 9 个虚拟节点映射到哈希环上,哈希环上的节点数量多了 3 倍。

cke_140.png

你可以看到,节点数量多了后,节点在哈希环上的分布就相对均匀了。这时候,如果有访问请求寻址到「A-01」这个虚拟节点,接着再通过「A-01」虚拟节点找到真实节点 A,这样请求就能访问到真实节点 A 了。

上面为了方便你理解,每个真实节点仅包含 3 个虚拟节点,这样能起到的均衡效果其实很有限。而在实际的工程中,虚拟节点的数量会大很多,比如 Nginx 的一致性哈希算法,每个权重为 1 的真实节点就含有160 个虚拟节点。

另外,虚拟节点除了会提高节点的均衡度,还会提高系统的稳定性。当节点变化时,会有不同的节点共同分担系统的变化,因此稳定性更高

比如,当某个节点被移除时,对应该节点的多个虚拟节点均会移除,而这些虚拟节点按顺时针方向的下一个虚拟节点,可能会对应不同的真实节点,即这些不同的真实节点共同分担了节点变化导致的压力。

而且,有了虚拟节点后,还可以为硬件配置更好的节点增加权重,比如对权重更高的节点增加更多的虚拟机节点即可。

因此,带虚拟节点的一致性哈希方法不仅适合硬件配置不同的节点的场景,而且适合节点规模会发生变化的场景

总结

不同的负载均衡算法适用的业务场景也不同的。

轮训这类的策略只能适用与每个节点的数据都是相同的场景,访问任意节点都能请求到数据。但是不适用分布式系统,因为分布式系统意味着数据水平切分到了不同的节点上,访问数据的时候,一定要寻址存储该数据的节点。

哈希算法虽然能建立数据和节点的映射关系,但是每次在节点数量发生变化的时候,最坏情况下所有数据都需要迁移,这样太麻烦了,所以不适用节点数量变化的场景。

为了减少迁移的数据量,就出现了一致性哈希算法。

一致性哈希是指将「存储节点」和「数据」都映射到一个首尾相连的哈希环上,如果增加或者移除一个节点,仅影响该节点在哈希环上顺时针相邻的后继节点,其它数据也不会受到影响。

但是一致性哈希算法不能够均匀的分布节点,会出现大量请求都集中在一个节点的情况,在这种情况下进行容灾与扩容时,容易出现雪崩的连锁反应。

为了解决一致性哈希算法不能够均匀的分布节点的问题,就需要引入虚拟节点,对一个真实节点做多个副本。不再将真实节点映射到哈希环上,而是将虚拟节点映射到哈希环上,并将虚拟节点映射到实际节点,所以这里有「两层」映射关系。

引入虚拟节点后,可以会提高节点的均衡度,还会提高系统的稳定性。所以,带虚拟节点的一致性哈希方法不仅适合硬件配置不同的节点的场景,而且适合节点规模会发生变化的场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/97304.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

文件格式转换

把我的悲惨故事说给大家乐呵乐呵:老板让运营把一些数据以json格式给我,当我看到运营在石墨文档上编辑的时候我人都傻了,我理解运营的艰难,可我也是真的难啊,在石墨文档编辑的眼花缭乱的,很多属性都错乱了(诸…

[SWPUCTF 2021 新生赛]sql - 联合注入

这题可以参考文章:[SWPUCTF 2021 新生赛]easy_sql - 联合注入||报错注入||sqlmap 这题相比于参考文章的题目多了waf过滤 首先,仍然是网站标题提示参数是wllm 1、fuzz看哪些关键字被过滤:空格、substr、被过滤 2、?wllm-1/**/union/**/selec…

微信小程序 movable-area 区域拖动动态组件演示

movable-area 组件在小程序中的作用是用于创建一个可移动的区域,可以在该区域内拖动视图或内容。这个组件常用于实现可拖动的容器或可滑动的列表等交互效果。 使用 movable-area 组件可以对其内部的 movable-view 组件进行拖动操作,可以通过设置不同的属…

消息驱动 —— SpringCloud Stream

Stream 简介 Spring Cloud Stream 是用于构建消息驱动的微服务应用程序的框架,提供了多种中间件的合理配置 Spring Cloud Stream 包含以下核心概念: Destination Binders:目标绑定器,目标指的是 Kafka 或者 RabbitMQ&#xff0…

信息增益,经验熵和经验条件熵——决策树

目录 1.经验熵 2.经验条件熵 3.信息增益 4.增益比率 5.例子1 6.例子2 在决策树模型中,我们会考虑应该选择哪一个特征作为根节点最好,这里就用到了信息增益 通俗上讲,信息增益就是在做出判断时,该信息对你影响程度的大小。比…

抖音seo源代码开源部署----基于开放平台SaaS服务

抖音SEO搜索是什么? 抖音SEO搜索是指在抖音平台上进行搜索引擎优化(Search Engine Optimization)的一种技术手段。 通过优化抖音账号、发布内容和关键词等,提高抖音视频在搜索结果中的排名,从而增加视频曝光量和用户点…

ValueError: high is out of bounds for int32 报错

问题描述: 笔者在Windows 64位平台跑一个在Ubuntu上运行正常的程序时,出现了以下报错: 具体为: seed np.random.randint(0, 2 ** 32) # make a seed with numpy generatorFile "mtrand.pyx", line 763, in numpy.ra…

Moonbeam Ignite强势回归

参与Moonbeam上最新的流动性计划 还记得新一轮的流动性激励计划吗?Moonbeam Ignite社区活动带着超过300万枚GLMR奖励来啦!体验新项目,顺便薅一把GLMR羊毛。 本次Moonbeam Ignite活动的参与项目均为第二批Moonbeam生态系统Grant资助提案中获…

BaseQuickAdapter触底刷新实现

触底刷新实现 使用BaseQuickAdapter,在适配器中实现 LoadMoreModule即可,如下加上即可,无需多写代码 以下为分页实现: 视图中 // 获取加载更多模块loadMoreModule blogAdapter.getLoadMoreModule();loadMoreModule.setOnLoadMo…

无线振弦采集仪在岩土工程中如何远程监测和远程维护

无线振弦采集仪在岩土工程中如何远程监测和远程维护 随着岩土工程施工的不断发展和科技水平的不断提高,远程监测和远程维护设备也得到了广泛关注和应用。无线振弦采集仪是一种广泛应用于岩土工程中的测量仪器,在现代化施工中扮演着重要的角色。本文将就…

2023学生近视了用什么台灯好呢?好用预防近视的护眼台灯推荐

自从护眼台灯能够帮助孩子在写作业时能够缓解视觉疲劳以来,许多家长已经给孩子安排上来护眼台灯,护眼台灯能够提供良好的照明环境,并且能够让我们专心学习提高工作效率。但由于护眼台灯含有独家的黑科技技术,价格始终居高不下&…

【微信小程序开发】一文学会使用CSS样式布局与美化

引言 在微信小程序开发中,CSS样式布局和美化是非常重要的一部分,它能够为小程序增添美感,提升用户体验。本文将介绍如何学习使用CSS进行样式布局和美化,同时给出代码示例,帮助开发者更好地掌握这一技巧。 一、CSS样式布…

ssm+vue的公司人力资源管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频: ssmvue的公司人力资源管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结…

【Overload游戏引擎分析】画场景栅格的Shader分析

Overload引擎地址: GitHub - adriengivry/Overload: 3D Game engine with editor 一、栅格绘制基本原理 Overload Editor启动之后,场景视图中有栅格线,这个在很多软件中都有。刚开始我猜测它应该是通过绘制线实现的。阅读代码发现&#xff0…

漏刻有时物联网环境态势感知大数据(设备列表、动态折线图)

物联网环境下的态势感知是指对物联网环境中的各种要素进行全面、实时、准确的监测、分析和预测,以实现网络态势的全面掌握和安全威胁的及时响应和处理。具体而言,态势感知以物联网环境为基础,利用各类传感器、数据采集设备和其他相关工具,对物联网设备、资产、数据流等进行…

【Python】语言学习

之前总觉得python简单,不当回事,直到自己动手连输出都写不出来。。于是开一篇专门练python的博客。 输出 Python初相识 (educoder.net) 常规输出 print("向上:%.2f,向下:%.2f" %(pow(1.001, 365),pow(0.999, 365))) …

论文笔记 A theory of learning from different domains

domain adaptation 领域理论方向的重要论文. 这篇笔记主要是推导文章中的定理, 还有分析定理的直观解释. 笔记中的章节号与论文中的保持一致. 1. Introduction domain adaptation 的设定介绍: 有两个域, source domain 与 target domain. source domain: 一组从 source dist.…

Java 面向对象的三大特性

面向对象编程有三大特征: 封装、继承和多态。 1.封装 1)封装介绍 封装(encapsulation)就是把抽象出的数据[属性]和对数据的操作[方法]封装在一起数据被保护在内部.程序的其它部分只有通过被授权的操作[方法],才能对数据进行操作。 2)封装的理解和好处 隐…

Springboot使用ProcessBuilder创建系统进程执行shell命令备份数据库

文章目录 概要1、查看mysql版本2、相关依赖3、具体代码技术细节 概要 Springboot执行shell命令备份数据库。 1、查看mysql版本 mysql --version2、相关依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-star…

【力扣-每日一题】901. 股票价格跨度

暴力解法&#xff1a; class StockSpanner { private:vector<int> pri; public:StockSpanner() {}int next(int price) {pri.emplace_back(price);int count0;for(int ipri.size()-1;i>0;i--){if(pri[i]<price)count;else break;}return count;} };/*** Your Stoc…