matlab数学建模方法与实践 笔记汇总

matlab数学建模方法与实践 笔记汇总

  • 写在最前面
  • 笔记1:快速入门
    • 1.导入数据
    • 2.数据探索
    • 3.多项式拟合
    • 4.发布功能
    • 5.数据类型
    • 6、全部代码
  • 笔记2:数据的准备
    • 1.数据的读取与写入
      • excel、txt
      • 读图
      • 读视频
    • 2.数据预处理
      • 缺失值
      • 噪声过滤
      • 数据归约
      • 数据变换
    • 3.数据统计
    • 4.数据可视化
      • P431.m
      • 柱状分布图
      • 常见统计量绘制于分布图中
      • 数据关联
      • 箱型图
    • 5.数据降维
      • PCA
  • 笔记3:常用数学建模方法
    • 1.一元回归
      • 一元线性回归
      • 一元非线性回归
    • 2.多元回归
    • 3.逐步回归
    • 4.logistic回归
  • 笔记4:机器学习
    • 1.概述
    • 2.分类
      • K-NN算法
      • 朴素贝叶斯
      • 支持向量机SVM
    • 聚类
      • K-means
      • 层次聚类+FCM
      • 深度学习
  • 笔记5:其他建模方法
    • 1.灰色预测
    • 2.小波去噪

写在最前面

快速从零入门matlab数学建模,从数据预览(绘制)、预处理、常用建模方法到机器学习、小波去噪等其他建模方法

注:为书的阅读笔记
《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著.

代码在Cha2文件夹下

笔记1:快速入门

1.导入数据

在这里插入图片描述
在这里插入图片描述

2.数据探索

在这里插入图片描述
在这里插入图片描述

3.多项式拟合

在这里插入图片描述

4.发布功能

在这里插入图片描述

5.数据类型

在这里插入图片描述

6、全部代码

% MATLAB 入门案例
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
%% 导入数据
clc, clear, close all
% 导入数据
[~, ~, raw] = xlsread('sz000004.xls','Sheet1','A2:H99');% 创建输出变量
data = reshape([raw{:}],size(raw));% 将导入的数组分配给列变量名称
Date = data(:,1);
DateNum = data(:,2);
Popen = data(:,3);
Phigh = data(:,4);
Plow = data(:,5);
Pclose = data(:,6);
Volum = data(:,7);
Turn = data(:,8);
% 清除临时变量clearvars data raw;%% 数据探索
figure % 创建一个新的图像窗口
plot(DateNum,Pclose,'k') % 更改图的的颜色的黑色(打印后不失真)
datetick('x','mm');% 更白日期显示类型
xlabel('日期'); % x轴说明
ylabel('收盘价'); % y轴说明
figure
bar(Pclose) % 作为对照图形%% 股票价值的评估
p = polyfit(DateNum,Pclose,1); % 多项式拟合,
% 分号作用为不在命令窗口显示执行结果
P1 = polyval(p,DateNum); % 得到多项式模型的结果
figure
plot(DateNum,P1,DateNum,Pclose,'*g'); % 模型与原始数据的对照
value = p(1) % 将斜率赋值给value, 作为股票的价值。%% 股票风险的评估
MaxDD = maxdrawdown(Pclose); % 计算最大回撤
risk = MaxDD  % 将最大回撤赋值给risk, 作为股票的风险

笔记2:数据的准备

1.数据的读取与写入

excel、txt

P23-25

读图

cha3
ReadImages

%% 读取图片
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
clc, clear, close all
a1=imread('000.bmp');
[m,n]=size(a1);
%% 批量读取图片
dirname = 'ImageChips';
files = dir(fullfile(dirname, '*.bmp'));
a=zeros(m,n,19);
pic=[];
for ii = 1:length(files)filename = fullfile(dirname, files(ii).name);a(:,:,ii)=imread(filename);pic=[pic,a(:,:,ii)];
end
double(pic);
figure
imshow(pic,[])

此外参考https://blog.csdn.net/WTYuong/article/details/122626337
图像识别系列

读视频

选取某帧数图像进行图像层面的分析

cha3
readVideo

%% 读取视频数据
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
videoFReader = vision.VideoFileReader('vippedtracking.mp4');% 播放视频文件
videoPlayer = vision.VideoPlayer;
while ~isDone(videoFReader)videoFrame = step(videoFReader);step(videoPlayer, videoFrame);
end
release(videoPlayer);%% 设置播放方式
% 重置播放器
reset(videoFReader)
% 增加播放器的尺寸
r = groot;
scrPos = r.ScreenSize;
%  Size/position is always a 4-element vector: [x0 y0 dx dy]
dx = scrPos(3); dy = scrPos(4);
videoPlayer = vision.VideoPlayer('Position',[dx/8, dy/8, dx*(3/4), dy*(3/4)]);
while ~isDone(videoFReader)videoFrame = step(videoFReader);step(videoPlayer, videoFrame);
end
release(videoPlayer);
reset(videoFReader)%% 获取视频中的图像
videoFrame = step(videoFReader);
n = 0;
while n~=15videoFrame = step(videoFReader);n = n+1;
end
figure, imshow(videoFrame)
release(videoPlayer);
release(videoFReader)

2.数据预处理

P27

缺失值

删除、插补(均值、回归、极大似然估计(期望值最大化))

噪声过滤

回归、平滑、离群点分析、小波过滤
#3# 数据集成
建模比赛没有

数据归约

属性选择、样本选择
相关性分析、主成分分析

数据变换

P33
标准化、离散化、语义转换

3.数据统计

4.数据可视化

P431.m

原始分布形态,了解大致分布中心、边界、数据集中度
在这里插入图片描述

柱状分布图

图3-8即为用hist绘制的变量的柱状分布图,该图的优势是更直观地反映了数据的集程序。由该图可以看出,变量dv3过于集中,这对数据建模是不利的,相当于这个变量基本是固定值,对任何样本都是一样的,所以没有区分效果,这样的变量就可以考虑删除了。可见数据进行可视化分析,意义还是很大的。

在这里插入图片描述
请添加图片描述

% 数据可视化——基本绘图
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
% 读取数据
clc, clear al, close all
X=xlsread('dataTableA2.xlsx');
% 绘制变量dv1的基本分布
N=size(X,1);
id=1:N;
figure
plot( id', X(:,2),'LineWidth',1)
set(gca,'linewidth',2);
xlabel('编号','fontsize',12);
ylabel('dv1', 'fontsize',12);
title('变量dv1分布图','fontsize',12);
% 同时绘制变量dv1-dv4的柱状分布图
figure
subplot(2,2,1);
hist(X(:,2));
title('dv1柱状分布图','fontsize',12)
subplot(2,2,2);
hist(X(:,3));
title('dv2柱状分布图','fontsize',12)
subplot(2,2,3);
hist(X(:,4));
title('dv3柱状分布图','fontsize',12)
subplot(2,2,4);
hist(X(:,5));
title('dv4柱状分布图','fontsize',12)

常见统计量绘制于分布图中

P432.m
在这里插入图片描述

% 数据可视化——数据分布形状图
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
% 读取数据
clc, clear al, close all
X=xlsread('dataTableA2.xlsx');
dv1=X(:,2);% 绘制变量dv1的柱状分布图
h = -5:0.5:5;
n = hist(dv1,h);
figure
bar(h, n)% 计算常用的形状度量指标
mn = mean(dv1); % 均值
sdev = std(dv1); % 标准差
mdsprd = iqr(dv1); % 四分位数
mnad = mad(dv1); % 中位数
rng = range(dv1); % 极差% 标识度量数值
x = round(quantile(dv1,[0.25,0.5,0.75]));
y = (n(h==x(1)) + n(h==x(3)))/2;
line(x,[y,y,y],'marker','x','color','r')x = round(mn + sdev*[-1,0,1]);
y = (n(h==x(1)) + n(h==x(3)))/2;
line(x,[y,y,y],'marker','o','color',[0 0.5 0])x = round(mn + mnad*[-1,0,1]);
y = (n(h==x(1)) + n(h==x(3)))/2;
line(x,[y,y,y],'marker','*','color',[0.75 0 0.75])x = round([min(dv1),max(dv1)]);
line(x,[1,1],'marker','.','color',[0 0.75 0.75])legend('Data','Midspread','Std Dev','Mean Abs Dev','Range')

数据关联

P433.m

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

% 数据可视化——变量想相关性
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
% 读取数据
clc, clear al, close all
X=xlsread('dataTableA2.xlsx');
Vars = X(:,7:12);
%  绘制变量间相关性关联图
figure
plotmatrix(Vars)
%  绘制变量间相关性强度图
covmat = corrcoef(Vars);
figure
imagesc(covmat);
grid;
colorbar;

箱型图

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

% 数据可视化——数据分组
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
% 读取数据
clc, clear al, close all
X=xlsread('dataTableA2.xlsx');
dv1=X(:,2);
eva=X(:,12);
% Boxplot
figure
boxplot(X(:,2:12))
figure
boxplot(dv1, eva)
figure
boxplot(X(:,5))

5.数据降维

PCA

P41 原理、步骤
p43 案例

在这里插入图片描述

%% PCA数据降维实例
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
%% 读取数据
A=xlsread('Coporation_evaluation.xlsx', 'B2:I16');% Transfer orginal data to standard data
a=size(A,1);   % Get the row number of A
b=size(A,2);   % Get the column number of A
for i=1:bSA(:,i)=(A(:,i)-mean(A(:,i)))/std(A(:,i));  % Matrix normalization
end% Calculate correlation matrix of A.
CM=corrcoef(SA);% Calculate eigenvectors and eigenvalues of correlation matrix.
[V, D]=eig(CM);% Get the eigenvalue sequence according to descending and the corrosponding
% attribution rates and accumulation rates.
for j=1:bDS(j,1)=D(b+1-j, b+1-j);
end
for i=1:bDS(i,2)=DS(i,1)/sum(DS(:,1));DS(i,3)=sum(DS(1:i,1))/sum(DS(:,1));
end% Calculate the numvber of principal components.
T=0.9;  % set the threshold value for evaluating information preservation level.
for K=1:bif DS(K,3)>=TCom_num=K;break;end
end% Get the eigenvectors of the Com_num principal components
for j=1:Com_numPV(:,j)=V(:,b+1-j);
end% Calculate the new socres of the orginal items
new_score=SA*PV;for i=1:atotal_score(i,2)=sum(new_score(i,:));total_score(i,1)=i;
end
new_score_s=sortrows(total_score,-2);%% 显示结果
disp('特征值及贡献率:')
DS
disp('阀值T对应的主成分数与特征向量:')
Com_num
PV
disp('主成分分数:')
new_score
disp('主成分分数排序:')
new_score_s

笔记3:常用数学建模方法

1.一元回归

一元线性回归

P48
最小二乘
E4_1
在这里插入图片描述

%% 一元线性回归实例
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
%% 输入数据
clc, clear all, close all
x=[23.80,27.60,31.60,32.40,33.70,34.90,43.20,52.80,63.80,73.40];
y=[41.4,51.8,61.70,67.90,68.70,77.50,95.90,137.40,155.0,175.0];	
%% 采用最小二乘回归
% 绘制散点图,判断是否具有线性关系
figure
plot(x,y,'r*')                         %作散点图
xlabel('x(职工工资总额)','fontsize', 12)           %横坐标名
ylabel('y(商品零售总额)', 'fontsize',12)           %纵坐标名
set(gca,'linewidth',2);
% 采用最小二乘拟合
Lxx=sum((x-mean(x)).^2);
Lxy=sum((x-mean(x)).*(y-mean(y)));
b1=Lxy/Lxx;
b0=mean(y)-b1*mean(x);
y1=b1*x+b0;
hold on
plot(x, y1,'linewidth',2);%% 采用LinearModel.fit函数进行回归
m2 = LinearModel.fit(x,y)%% 采用regress函数进行回归
Y=y';
X=[ones(size(x,2),1),x'];
[b, bint, r, rint, s] = regress(Y, X)

一元非线性回归

E4_2
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

%% 一元非线性回归实例
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
%% 输入数据
clc, clear all, close all
x=[1.5, 4.5, 7.5,10.5,13.5,16.5,19.5,22.5,25.5];
y=[7.0,4.8,3.6,3.1,2.7,2.5,2.4,2.3,2.2];  
plot(x,y,'*','linewidth',2);
set(gca,'linewidth',2);
xlabel('销售额x/万元','fontsize', 12)           
ylabel('流通费率y/%', 'fontsize',12)           %% 对数形式
m1 = @(b,x) b(1) + b(2)*log(x);
nonlinfit1 = fitnlm(x,y,m1,[0.01;0.01])
b=nonlinfit1.Coefficients.Estimate;
Y1=b(1,1)+b(2,1)*log(x);
hold on
plot(x,Y1,'--k','linewidth',2)%% 指数形式拟合
m2 = 'y ~ b1*x^b2';
nonlinfit2 = fitnlm(x,y,m2,[1;1])
b1=nonlinfit2.Coefficients.Estimate(1,1);
b2=nonlinfit2.Coefficients.Estimate(2,1);
Y2=b1*x.^b2;
hold on
plot(x,Y2,'r','linewidth',2)
legend('原始数据','a+b*lnx','a*x^b')

2.多元回归

P52
(1)样本散点图
(2)
在这里插入图片描述

在这里插入图片描述

3.逐步回归

在这里插入图片描述
在这里插入图片描述

4.logistic回归

P56
在这里插入图片描述
在这里插入图片描述

回归系数:-0.63656 0.004127 0.016292 0.53305
评价结果:0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1

笔记4:机器学习

1.概述

分类、聚类
在这里插入图片描述

2.分类

%% svm高版本
% classifier = fitcsvm(train_data,train_labels,'KernelFunction','linear')
% test_labels = predict(classifier, test_data);
%% %% 贝叶斯分类高版本
% 使用该工具箱重新整合代码  fitcnb 
% 具体使用方式 在命令行输入 doc fitcnb
%%%% 分类方法示例程序
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
clc, clear all, close all
%% 导入数据及数据预处理 
load bank.mat
% 将分类变量转换成分类数组
names = bank.Properties.VariableNames;
category = varfun(@iscellstr, bank, 'Output', 'uniform');
for i = find(category)bank.(names{i}) = categorical(bank.(names{i}));
end
% 跟踪分类变量
catPred = category(1:end-1);
% 设置默认随机数生成方式确保该脚本中的结果是可以重现的
rng('default');
% 数据探索----数据可视化
figure(1)
gscatter(bank.balance,bank.duration,bank.y,'kk','xo')
xlabel('年平均余额/万元', 'fontsize',12)
ylabel('上次接触时间/秒', 'fontsize',12)
title('数据可视化效果图', 'fontsize',12)
set(gca,'linewidth',2);% 设置响应变量和预测变量
X = table2array(varfun(@double, bank(:,1:end-1)));  % 预测变量
Y = bank.y;   % 响应变量
disp('数据中Yes & No的统计结果:')
tabulate(Y)
%将分类数组进一步转换成二进制数组以便于某些算法对分类变量的处理
XNum = [X(:,~catPred) dummyvar(X(:,catPred))];
YNum = double(Y)-1;%% 设置交叉验证方式
% 随机选择40%的样本作为测试样本
cv = cvpartition(height(bank),'holdout',0.40);
% 训练集
Xtrain = X(training(cv),:);
Ytrain = Y(training(cv),:);
XtrainNum = XNum(training(cv),:);
YtrainNum = YNum(training(cv),:);
% 测试集
Xtest = X(test(cv),:);
Ytest = Y(test(cv),:);
XtestNum = XNum(test(cv),:);
YtestNum = YNum(test(cv),:);
disp('训练集:')
tabulate(Ytrain)
disp('测试集:')
tabulate(Ytest)%% 最近邻
% 训练分类器
knn = ClassificationKNN.fit(Xtrain,Ytrain,'Distance','seuclidean',...'NumNeighbors',5);
% 进行预测
[Y_knn, Yscore_knn] = knn.predict(Xtest);
Yscore_knn = Yscore_knn(:,2);
% 计算混淆矩阵
disp('最近邻方法分类结果:')
C_knn = confusionmat(Ytest,Y_knn)% %% 贝叶斯
% % 设置分布类型
% dist = repmat({'normal'},1,width(bank)-1);
% dist(catPred) = {'mvmn'};
% % 训练分类器
% Nb = fitcnb(Xtrain,Ytrain);
% % 进行预测
% Y_Nb = Nb.predict(Xtest);
% Yscore_Nb = Nb.posterior(Xtest);
% Yscore_Nb = Yscore_Nb(:,2);
% % 计算混淆矩阵
% disp('贝叶斯方法分类结果:')
% C_nb = confusionmat(Ytest,Y_Nb)%% 神经网络
% 设置神经网络模式及参数
hiddenLayerSize = 5;
net = patternnet(hiddenLayerSize);
% 设置训练集、验证机和测试集
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
% 训练网络
net.trainParam.showWindow = false;
inputs = XtrainNum';
targets = YtrainNum';
[net,~] = train(net,inputs,targets);
% 用测试集数据进行预测
Yscore_nn = net(XtestNum')';
Y_nn = round(Yscore_nn);
% 计算混淆矩阵
disp('神经网络方法分类结果:')
C_nn = confusionmat(YtestNum,Y_nn)%% Logistic
% 训练分类器
glm = fitglm(Xtrain,YtrainNum,'linear', 'Distribution','binomial',...'link','logit','CategoricalVars',catPred, 'VarNames', names);
% 用测试集数据进行预测
Yscore_glm = glm.predict(Xtest);
Y_glm = round(Yscore_glm);
% 计算混淆矩阵
disp('Logistic方法分类结果:')
C_glm = confusionmat(YtestNum,Y_glm)%% 判别分析
% 训练分类器
da = ClassificationDiscriminant.fit(XtrainNum,Ytrain);
% 进行预测
[Y_da, Yscore_da] = da.predict(XtestNum); 
Yscore_da = Yscore_da(:,2);
% 计算混淆矩阵
disp('判别方法分类结果:')
C_da = confusionmat(Ytest,Y_da)%% 支持向量机(SVM)
% 设置最大迭代次数
opts = statset('MaxIter',45000);
% 训练分类器
svmStruct = svmtrain(Xtrain,Ytrain,'kernel_function','linear','kktviolationlevel',0.2,'options',opts);
% 进行预测
Y_svm = svmclassify(svmStruct,Xtest);
Yscore_svm = svmscore(svmStruct, Xtest);
Yscore_svm = (Yscore_svm - min(Yscore_svm))/range(Yscore_svm);
% 计算混淆矩阵
disp('SVM方法分类结果:')
C_svm = confusionmat(Ytest,Y_svm)%% 决策树
% 训练分类器
t = ClassificationTree.fit(Xtrain,Ytrain,'CategoricalPredictors',catPred);
% 进行预测
Y_t = t.predict(Xtest);
% 计算混淆矩阵
disp('决策树方法分类结果:')
C_t = confusionmat(Ytest,Y_t)%% 通过ROC曲线来比较方法
methods = {'KNN','NBayes','NNet', 'GLM',  'LDA', 'SVM'};
scores = [Yscore_knn, Yscore_Nb, Yscore_nn, Yscore_glm, Yscore_da,  Yscore_svm];
%绘制ROC曲线
figure
auc= zeros(6); hCurve = zeros(1,6);
for ii=1:6;[rocx, rocy, ~, auc(ii)] = perfcurve(Ytest, scores(:,ii), 'yes');hCurve(ii,:) = plot(rocx, rocy, 'k','LineWidth',2); hold on;
end
legend(hCurve(:,1), methods)
set(gca,'linewidth',2);
grid on;
title('各方法ROC曲线', 'fontsize',12); 
xlabel('假阳率 [ = FP/(TN+FP)]', 'fontsize',12); 
ylabel('真阳率 [ = TP/(TP+FN)]', 'fontsize',12);
% 绘制各方法分类正确率
figure;
bar(auc); set(gca,'YGrid', 'on','XTickLabel',methods); 
xlabel('方法简称', 'fontsize',12); 
ylabel('分类正确率', 'fontsize',12);
title('各方法分类正确率','fontsize',12);
set(gca,'linewidth',2);

K-NN算法

分类:预测购买or不购买
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

朴素贝叶斯

P66

2019b跑不通,报错
无法解析名称 NaiveBayes.fit。

根据网上经验贴修改后报另一个无法解决的报错,因而暂放

在这里插入图片描述

支持向量机SVM

在这里插入图片描述

报错
尝试安装 lib-svm
未果

聚类

K-means

在这里插入图片描述

同型相关系数: 0.8804

在这里插入图片描述

层次聚类+FCM

在这里插入图片描述

深度学习

在这里插入图片描述

笔记5:其他建模方法

1.灰色预测

在这里插入图片描述
2005A
在这里插入图片描述

% 灰色预测
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
clear
syms a b;
c=[a b]';
A=[89677,99215,109655,120333,135823,159878,182321,209407,246619,300670];
B=cumsum(A);  % 原始数据累加
n=length(A);
for i=1:(n-1)C(i)=(B(i)+B(i+1))/2;  % 生成累加矩阵
end
% 计算待定参数的值
D=A;D(1)=[];
D=D';
E=[-C;ones(1,n-1)];
c=inv(E*E')*E*D;
c=c';
a=c(1);b=c(2);
% 预测后续数据
F=[];F(1)=A(1);
for i=2:(n+10)F(i)=(A(1)-b/a)/exp(a*(i-1))+b/a ;
end
G=[];G(1)=A(1);
for i=2:(n+10)G(i)=F(i)-F(i-1); %得到预测出来的数据
end 
t1=1999:2008;
t2=1999:2018;
G
plot(t1,A,'ko', 'LineWidth',2)
hold on
plot(t2,G,'k', 'LineWidth',2)
xlabel('年份', 'fontsize',12)
ylabel('利润/(元/年)','fontsize',12)
set(gca,  'LineWidth',2);
% 灰色预测
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
clear
syms a b;
c=[a b]';
A=[174	179	183	189	207 234	220.5 256	270	285];
B=cumsum(A);  % 原始数据累加
n=length(A);
for i=1:(n-1)C(i)=(B(i)+B(i+1))/2;  % 生成累加矩阵
end
% 计算待定参数的值
D=A;D(1)=[];
D=D';
E=[-C;ones(1,n-1)];
c=inv(E*E')*E*D;
c=c';
a=c(1);b=c(2);
% 预测后续数据
F=[];F(1)=A(1);
for i=2:(n+10)F(i)=(A(1)-b/a)/exp(a*(i-1))+b/a ;
end
G=[];G(1)=A(1);
for i=2:(n+10)G(i)=F(i)-F(i-1); %得到预测出来的数据
end 
t1=1995:2004;
t2=1995:2014;
G, a, b % 输出预测值,发展系数和灰色作用量plot(t1,A,'ko', 'LineWidth',2)
hold on
plot(t2,G,'k', 'LineWidth',2)
xlabel('年份', 'fontsize',12)
ylabel('污水量/亿吨','fontsize',12)
set(gca,  'LineWidth',2);

2.小波去噪

对具有噪声的信号数据进行去噪
请添加图片描述

% 小波去噪
% 《MATLAB数学建模方法与实践》(《MATLAB在数学建模中的应用》升级版),北航出版社,卓金武、王鸿钧编著. 
clc, clear all, close all,
load nelec.mat;
sig = nelec;
denPAR = {[1 94 5.9 ; 94 1110 19.5 ; 1110 2000 4.5]};
wname = 'sym4';
level = 5;
sorh  = 's'; % type of thresholding
thr = 4.5;
[sigden_1,~,~,perf0,perfl2] = wdencmp('gbl',sig,wname,level,thr,sorh,1);
res = sig-sigden_1;
subplot(3,1,1);plot(sig,'r');       axis tight
title('Original Signal')
subplot(3,1,2);plot(sigden_1,'b');  axis tight
title('Denoised Signal');
subplot(3,1,3);plot(res,'k');       axis tight
title('Residual');
% perf0,perfl2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/97237.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

除静电离子风蛇的工作原理及应用

静电离子风蛇是一种通过产生大量负离子来中和空气中的静电荷的设备。它们通常用于防止静电对电子设备、印刷机、加工机等工业设备造成损害。 静电离子风蛇的工作原理是通过电离器将空气中的氧气分子转化为氧离子,然后将这些氧离子释放到空气中。这些氧离子会与空气…

适老产品反“坑老”,美的智能化家电是否能坐稳银发经济顺风车?

随着我国老龄化程度不断加深,银发经济崛起早已成为不争的共识。早在2013年,《中国老年人家电需求研究报告》就曾预测,仅在城镇空巢老年人家庭,每年产生的老年家电需求规模就超过600亿元,加上非空巢老人的需求&#xff…

Spring注册Bean系列--方法5:@Import+ImportBeanDefinitionRegistrar

原文网址:Spring注册Bean系列--方法5:ImportImportBeanDefinitionRegistrar_IT利刃出鞘的博客-CSDN博客 简介 本文介绍Spring注册Bean的方法:ImportImportBeanDefinitionRegistrar。 注册Bean的方法我写了一个系列,见&#xff…

MySQL基础-事务

目录 1.事务简介 2.事务的操作 2.1 实验需要用到的数据 2.2 完成转账操作 修改事务执行方式 手动开启事务的方式 3.事务的四大特性 4.并发事务问题 5.事务隔离级别 5.1 事务隔离级别分类 5.2 查看事务隔离级别 5.3 设置事务隔离级别 1.事务简介 事务是一组操作的集合…

Android---GC回收机制与分代回收策略

目录 GC 回收机制 垃圾回收(Garbage Collection, GC) 垃圾回收算法 JVM 分代回收策略 1. 新生代 2. 老年代 GC Log 分析 引用 GC 回收机制 垃圾回收(Garbage Collection, GC) 垃圾就是内存中已经没有用的对象,JVM 中的垃圾回收器(Garbage Collector)会自…

[CISCN2019 华北赛区 Day1 Web5]CyberPunk 二次报错注入

buu上 做点 首先就是打开环境 开始信息收集 发现源代码中存在?file 提示我们多半是包含 我原本去试了试 ../../etc/passwd 失败了 直接伪协议上吧 php://filter/readconvert.base64-encode/resourceindex.phpconfirm.phpsearch.phpchange.phpdelete.php 我们通过伪协议全…

入侵防御系统(IPS)网络安全设备介绍

入侵防御系统(IPS)网络安全设备介绍 1. IPS设备基础 IPS定义 IPS(Intrusion Prevention System)是一种网络安全设备或系统,用于监视、检测和阻止网络上的入侵尝试和恶意活动。它是网络安全架构中的重要组成部分&…

设计模式 - 创建型模式考点篇:工厂模式、建造者模式

目录 一、创建型模式 1.1、工厂模式 1.1.1、简单工厂模式(非 23 种经典设计模式) 概述 案例 1.1.2、静态工厂(扩展) 1.1.3、工厂方法模式 概念 案例 1.2、建造者模式 1.2.1、概念 1.2.2、案例 1.2.3、建造者模式扩展&…

vue3使用知识点总结

一、vue3 项目搭建 npm 6.x npm init vitelatest myvue3 --template vuevue 3.2.26使用 element plus ui 框架 npm i -S element plus//全部引入 import ElementPlus from element-plus; import element-plus/dist/index.css; const Vue createApp(App); Vue.use(ElementPl…

腾讯会议录制没有声音?看完这篇你就懂了

“腾讯会议录制的视频怎么没有声音呀?老师用腾讯会议上网课,就想用腾讯会议内置的录屏功能录下来,可是录制的视频没有声音!真的服了,有没有人知道怎么解决的,帮帮忙。” 腾讯会议是一种常用的远程会议工具…

基于遗传算法的新能源电动汽车充电桩与路径选择(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

iTOP-RK3588开发板使用 tensorflow框架

TensorFlow 是一个软件库或框架,由 Google 团队设计,以最简单的方式实现机器学习和深度学习概念。它结合了优化技术的计算代数,便于计算许多数学表达式。TensorFlow 有以下 重要功能 - 它包含一个叫做张量概念,用来创建多维数组&…

【密评】商用密码应用安全性评估从业人员考核题库(五)

商用密码应用安全性评估从业人员考核题库(五) 国密局给的参考题库5000道只是基础题,后续更新完5000还会继续更其他高质量题库,持续学习,共同进步。 1001 单项选择题 下列分组密码认证模式中,使用密钥最少的…

深入浅出DAX:购买推荐及产品ABC分类分析

深入浅出DAX:购买推荐及产品ABC分类分析 DAX运算求值的三步骤。首先是检测筛选,然后将筛选功能应用于基础表格,最后计算结果。DAX中的筛选器函数是复杂且功能强大的函数。例如筛选函数可用于操作数据上下文来创建动态计算。 01、使用细节说…

Spring Boot如何配置CORS支持

Spring Boot如何配置CORS支持 CORS(跨源资源共享)是一种Web浏览器的安全性功能,用于控制网页上的脚本文件从不同的源加载其他网页资源。在开发现代Web应用程序时,通常需要跨域请求不同的资源,如API服务或其他Web应用程…

前端系列-1 HTML+JS+CSS基础

背景: 前端系列会收集碎片化的前端知识点,作为自己工作和学习时的字典,欢迎读者收藏和使用。 笔者是后端开发😶前端涉猎不深,因此文章重在广度和实用,对原理和性能不会过多深究。 1.html 1.1 html5网页结…

嵌入式处理趋势,第一部分:超集成MCU

当今的嵌入式微控制器(MCU)是协同和创新的惊人例子。单个芯片上可容纳30,000至2百万个门,直到最近,各种集成的组件和模块都被视为独立的高级IC。 例如,当前典型的MCU设备(下面的图1)可能包含以…

Quarto 入门教程 (1):简单介绍和资料汇总

本推文是 “手把手教你使用 Quarto 构建文档” 教程的第一部分,本文先介绍 Quarto 构建文档的原理;可创建的文档类型;对应的参考资源分享。 下一部分,会手把手介绍如何使用它(下次推文吧~)。 …

Springboot使用Aop保存接口请求日志到mysql(及解决Interceptor拦截器中引用mapper和service为null)

一、Springboot使用Aop保存接口请求日志到mysql 1、添加aop依赖 <!-- aop日志 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-aop</artifactId></dependency> 2、新建接口保存数据…

排序算法之【归并排序】

&#x1f4d9;作者简介&#xff1a; 清水加冰&#xff0c;目前大二在读&#xff0c;正在学习C/C、Python、操作系统、数据库等。 &#x1f4d8;相关专栏&#xff1a;C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…