【状态估计】将Transformer和LSTM与EM算法结合到卡尔曼滤波器中,用于状态估计(Python代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及文章讲解


💥1 概述

文章来源:

卡尔曼滤波器需要模型的真实参数,并递归地求解最优状态估计期望最大化(EM)算法适用于估计卡尔曼滤波之前不可用的模型参数,即EM-KF算法。为了提高EM-KF算法的准确性,作者提出了一种状态估计方法,该方法在序列到序列的编码器-解码器(seq2seq)框架下,将长-短期存储器网络(LSTM)、变压器和EM-KF方法相结合。对线性移动机器人模型的仿真表明,新方法更准确。

  • 卡尔曼滤波需要模型的真实参数,并递归求解最优状态估计。期望最大化(EM)算法适用于估计卡尔曼滤波前不可用的模型参数,即EM-KF算法。
  • 为了提高EM-KF算法的精度,该文在序列编码器-解码器(seq2seq)的框架中,结合长短期记忆网络(LSTM)、变压器和EM-KF算法,提出了一种状态估计方法。

我们在seq2seq中提出了用于状态估计的编码器-解码器框架,该状态估计等效于编码和解码观察。

  1. 之前将LSTM整合到KF的工作是采用LSTM编码器和KF 译码器。我们建议LSTM-KF采用LSTM编码器和EM-KF解码器。
  2. 在EM-KF解码器之前,用变压器编码器代替LSTM编码器,我们称之为 变压器-KF.
  3. 集成变压器和LSTM,我们称之为TL-KF。

集成变压器和LSTM在滤波前对观察进行编码,使EM算法更容易估计参数。

  1. 将Transformer和LSTM作为观测的编码器-解码器框架相结合,可以更有效地描述状态,衰减噪声干扰,削弱状态马尔可夫性质的假设和观测的条件独立性。这可以增强状态估计的精度和鲁棒性。
  2. 基于多头自注意和残余连接的变压器可以捕获长期依赖性,而LSTM编码器可以对时间序列进行建模。TL-KF是变压器、LSTM和EM-KF的组合,可用于参数未知的系统的状态估计。
  3. 卡尔曼平滑可以改善卡尔曼滤波,但在TL-KF中,滤波足够精确。因此,经过离线训练进行参数估计后,可以采用KF进行在线估计。

 

📚2 运行结果

 

  

部分代码:

kft = KalmanFilter(A,C,Q,R,B,D,m0,P0,random_state=random_state
)# model should be
state, observation = kft.sample(n_timesteps=step,initial_state=m0
)# provide data
#filtered_state_estimatet, f_covt = kft.filter(observation)
#smoothed_state_estimatet, s_covt = kft.smooth(observation)'''
Step 2: Initialize our model
'''# specify parameters
transition_matrix = A
transition_offset = B
observation_matrix = C
observation_offset = D
transition_covariance = 0.02*np.eye(3)
observation_covariance = np.eye(1)
initial_state_mean =[0,0,1]
initial_state_covariance = 5*np.eye(3)# sample from modelkf = KalmanFilter(transition_matrix, observation_matrix, transition_covariance,observation_covariance, transition_offset, observation_offset,initial_state_mean,initial_state_covariance,random_state=random_state,em_vars=[#'transition_matrices', 'observation_matrices','transition_covariance','observation_covariance',#'transition_offsets', 'observation_offsets','initial_state_mean', 'initial_state_covariance']
class TransformerBlock(nn.Module):"""Bidirectional Encoder = Transformer (self-attention)Transformer = MultiHead_Attention + Feed_Forward with sublayer connection"""def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout):""":param hidden: hidden size of transformer:param attn_heads: head sizes of multi-head attention:param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size:param dropout: dropout rate"""super().__init__()self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden)self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout)self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout)self.output_sublayer = SublayerConnection(size=hidden, dropout=dropout)self.dropout = nn.Dropout(p=dropout)self.hidden = hidden

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

@article{shi2021kalman,author={Zhuangwei Shi},title={Incorporating Transformer and LSTM to Kalman Filter with EM algorithm for state estimation},journal={arXiv preprint arXiv:2105.00250},year={2021},
}

🌈4 Matlab代码及文章讲解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/97016.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaWeb:上传文件

1.建普通maven项目,或者maven项目,这里以普通maven为例,区别的jar包的导入方式啦 到中央仓库下载哦 2.结构 3.写fileservlet public class FileServlet extends HttpServlet {Overrideprotected void doPost(HttpServletRequest req, HttpSe…

LVS+Keepalived 高可用集群负载均衡

一.keepalived介绍 1.1.Keepalived实现原理 由多台路由器组成一个热备组,通过共用的虚拟IP地址对外提供服务。 每个热备组内同时只有一台主路由器提供服务,其他路由器处于冗余状态。 若当前在线的路由器失效,则其他路由器会根据设置…

三相PWM整流器滞环电流控制Simulink仿真模型

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

No168.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

【C++面向对象侯捷下】4. pointer-like classes,关于智能指针 | 5. function-like classes,所谓仿函数

文章目录 4. pointer-like classes,关于智能指针pointer-like classes,关于智能指针 shared_ptrpointer-like classes,关于迭代器5. function-like classes,所谓仿函数【不懂,跳过】 4. pointer-like classes,关于智能指针 pointer-like classes,关于智…

【机器学习】决策树原理及scikit-learn使用

文章目录 决策树详解ID3 算法C4.5算法CART 算法 scikit-learn使用分类树剪枝参数重要属性和接口 回归树重要参数,属性及接口交叉验证代码示例 一维回归的图像绘制 决策树详解 决策树(Decision Tree)是一种非参数的有监督学习方法,…

Django 前端模板显示换行符、日期格式

linebreaksbr 显示换行符 <td>{{ data.sku_list|default:"无"|linebreaksbr }}</td> date:"Y年m月d日 H:i" 设置日期格式 <td>{{ data.submit_time|date:"Y年m月d日 H:i" }}</td> 其他语法 forloop 获取循环的索引 …

【audio】alsa pcm音频路径

文章目录 AML方案音频路径分析dump alsa pcm各个音频路径的原始音频流数据 AML方案音频路径分析 一个Audio Patch用来表示一个或多个source端到一个或多个sink端。这个是从代码的注释翻译来的&#xff0c;大家可以把它比作大坝&#xff0c;可以有好几个入水口和出水口&#xf…

【新书推荐】当 Python 遇到 ChatGPT —— 自动化办公落地

文章目录 当 Python 遇到 ChatGPT&#xff1a;一种强大的组合1. 文本生成2. 自动翻译3. 对话生成4. 情感分析 新书推荐《Python自动化办公应用大全&#xff08;ChatGPT版&#xff09;&#xff1a;从零开始教编程小白一键搞定烦琐工作&#xff08;上下册&#xff09;》前言内容简…

Neo4j深度学习

Neo4j的简介 Neo4j是用Java实现的开源NoSQL图数据库。从2003年开始开发&#xff0c;2007年正式发布第一版&#xff0c;其源码托管于GitHtb。Neo4j作为图数据库中的代表产品&#xff0c;已经在众多的行业项目中进行了应用&#xff0c;如&#xff1a;网络管理、软件分析、组织和…

DirectX12_Windows_GameDevelop_3:Direct3D的初始化

引言 查看龙书时发现&#xff0c;第四章介绍预备知识的代码不太利于学习。因为它不像是LearnOpenGL那样从头开始一步一步教你敲代码&#xff0c;导致你没有一种整体感。如果你把它当作某一块的代码进行学习&#xff0c;你跟着敲会发现&#xff0c;总有几个变量是没有定义的。这…

乌班图22.04 kubeadm简单搭建k8s集群

1. 我遇到的问题 任何部署类问题实际上对于萌新来说都不算简单&#xff0c;因为没有经验&#xff0c;这里我简单将部署的步骤和想法给大家讲述一下 2. 简单安装步骤 准备 3台标准安装的乌班图server22.04&#xff08;采用vm虚拟机安装&#xff0c;ip为192.168.50.3&#xff0…

STC89C51基础及项目第10天:LCD显示字符(非标协议外设)

1. 初识LCD1602&#xff08;233.79&#xff09; 非标协议外设 LCD1602显示 LCD1602&#xff08;Liquid Crystal Display&#xff09;是一种工业字符型液晶&#xff0c;能够同时显示 1602 即 32 字符(16列两行) 引脚说明 第 1 脚&#xff1a; VSS 为电源地第 2 脚&#xff1…

SpringBoot项目默认使用HikariDataSource数据库连接池修改使用Druid连接池

1.启动项目&#xff0c;查看正在使用的链接池。 2.在pom.xml文件中引入驱动 <dependency><groupId>com.alibaba</groupId><artifactId>druid-spring-boot-starter</artifactId><version>1.2.8</version></dependency> 3.在ap…

机器视觉工程师,公司设置奖金,真的为了奖励你吗?其实和你没关系

​据说某家大厂&#xff0c;超额罚款&#xff0c;有奖有罚很正常&#xff0c;但是我觉得你罚款代理商员工就不一样了&#xff0c;把代理商当成你的员工&#xff0c;我就觉得这些大厂的脑回路有问题。 有人从来没听说过项目奖金&#xff0c;更没有奖金。那么为什么设置奖金呢&a…

数字化转型频频失败?一体化模式提供新的思考

数字化连续6年出现在政府报告中&#xff0c;从《中小企业数字化赋能专项行动方案》到《关于推进“上云用数赋智”行动》、《“十四五” 规划和 2035 年远景目标建议》、《中小企业数字化转型指南》&#xff0c;再到2023年2月《数字中国建设整体布局规划》&#xff0c;加快数字化…

MM-Camera架构-ProcessCaptureRequest 流程分析

文章目录 processCaptureRequest\_3\_41.1 mDevice1.2 mDevice->ops->process\_capture\_request1.3 hardware to vendor mct\_shimlayer\_process\_event2.1 mct\_shimlayer\_handle\_parm2.2 mct\_shimlayer\_reg\_buffer processCaptureRequest_3_4 sdm660的摄像头走…

mysql5.7停止维护时间

mysql5.7将于2023年10月停止官网支持和更新&#xff1b;老项目要准备升级&#xff0c;新项目的mysql必须是mysql8.0&#xff08;2023-10&#xff09; 官方升级咨询地址 oracle官方升级咨询地址https://go.oracle.com/LP116153?elq_mid247718&sh1518132002061316121320310…

数据结构—栈、队列、链表

一、栈 Stack&#xff08;存取O(1)&#xff09; 先进后出&#xff0c;进去123&#xff0c;出来321。 基于数组&#xff1a;最后一位为栈尾&#xff0c;用于取操作。 基于链表&#xff1a;第一位为栈尾&#xff0c;用于取操作。 1.1、数组栈 /*** 基于数组实现的顺序栈&#…

波浪input输入框文字边框动画

一个input输入框的小动画,大家可以按需引入和修改 input的动画表现为,文字提示波浪动画 效果图如下 源码如下 tips: 有不懂的可以在评论区问博主 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name&q…