文章目录
- 一、选择系统
- 1.1 更新环境
- 二、安装使用whisper
- 2.1 创建环境
- 2.1 安装
- 2.1.1安装基础包
- 2.1.2安装依赖
- 3测试1
- 3测试2 语着分离
- 创建代码
- `报错ModuleNotFoundError: No module named 'pyannote'`
- `报错No module named 'pyannote_whisper'`
- 三、安装使用funASR
- 1 安装
- 1.1 安装 Conda(可选)
- 1.2 安装 Pytorch(版本 >= 1.11.0)
- 1.3 安装funASR
- 1.4 安装 modelscope(可选)
- 1.5 如何从本地模型路径推断(可选)
- 2 使用funASR
- 2.1 使用funASR
- 2.2 使用 pyannote.audio 进行语者分离
- 第一步:安装依赖
- 第二步:创建key
- 第三步:测试pyannote.audio
- 2.3 funAS整合pyannote.audio
- 1.1编写算法
- 1.2调用
- 3.微调
一、选择系统
这个镜像可以
1.1 更新环境
python -m pip install --upgrade pip
二、安装使用whisper
2.1 创建环境
# ssh登录系统
# 切换到root用户
mkdir /opt/tools/
cd /opt/tools/
# 安装miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
chmod +x Miniconda3-latest-Linux-x86_64.sh
./Miniconda3-latest-Linux-x86_64.sh
#按提示操作,安装目录建议选择/opt/miniconda3
#创建软链接
ln -s /opt/miniconda3/bin/conda /usr/local/bin/conda
#退出shell重新登陆,然后后续操作
#创建环境
conda create -n whisper python=3.9
conda activate whisper
2.1 安装
2.1.1安装基础包
pip install -U openai-whisper
或者
pip install git+https://github.com/openai/whisper.git
或者
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple openai-whisper
2.1.2安装依赖
pip install tiktoken
pip install setuptools-rust
#在conda whisper环境外执行,安装ffmpeg
sudo apt update && sudo apt install ffmpeg
3测试1
whisper audio.mp3 --model medium --language Chinese
代码调用
import whisper
import arrow# 定义模型、音频地址、录音开始时间
def excute(model_name,file_path,start_time):model = whisper.load_model(model_name)result = model.transcribe(file_path)for segment in result["segments"]:now = arrow.get(start_time)start = now.shift(seconds=segment["start"]).format("YYYY-MM-DD HH:mm:ss")end = now.shift(seconds=segment["end"]).format("YYYY-MM-DD HH:mm:ss")print("【"+start+"->" +end+"】:"+segment["text"])if __name__ == '__main__':excute("base","1001.mp3","2022-10-24 16:23:00")
3测试2 语着分离
创建代码
import os
import whisper
from pyannote.audio import Pipeline
from pyannote_whisper.utils import diarize_text
import concurrent.futurespipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token="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")
output_dir = '/root/autodl-tmp/pyannote-whisper'def process_audio(file_path):model = whisper.load_model("large")asr_result = model.transcribe(file_path, initial_prompt="语音转换")diarization_result = pipeline(file_path)final_result = diarize_text(asr_result, diarization_result)output_file = os.path.join(output_dir, os.path.basename(file_path)[:-4] + '.txt')with open(output_file, 'w') as f:for seg, spk, sent in final_result:line = f'{seg.start:.2f} {seg.end:.2f} {spk} {sent}\n'f.write(line)if not os.path.exists(output_dir):os.makedirs(output_dir)wave_dir = '/root/autodl-tmp/pyannote-whisper'
# 获取当前目录下所有wav文件名
wav_files = [os.path.join(wave_dir, file) for file in os.listdir(wave_dir) if file.endswith('.wav')]# 处理每个wav文件
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:executor.map(process_audio, wav_files)print('处理完成!')
报错ModuleNotFoundError: No module named 'pyannote'
解决方案
pip install pyannote.audio
报错No module named 'pyannote_whisper'
如果你使用使用AutoDL平台,你可以使用学术代理
加速
source /etc/network_turbo
git clone https://github.com/yinruiqing/pyannote-whisper.git
在项目里面写代码就可以了,或者复制代码里面的pyannote_whisper.utils模块代码
三、安装使用funASR
1 安装
官网
1.1 安装 Conda(可选)
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
sh Miniconda3-latest-Linux-x86_64.sh
source ~/.bashrc
conda create -n funasr python=3.8
conda activate funasr
1.2 安装 Pytorch(版本 >= 1.11.0)
pip3 install torch torchaudio
如果您的环境中存在CUDA,您应该安装与CUDA匹配的版本的pytorch。匹配列表可以在docs中找到。
1.3 安装funASR
从 pip 安装
pip3 install -U funasr
# 对于中国的用户,您可以使用以下命令进行安装:
# pip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
或者从源码安装funASR
git clone https://github.com/alibaba/FunASR.git && cd FunASR
pip3 install -e ./
1.4 安装 modelscope(可选)
如果您想使用 ModelScope 中的预训练模型,您应该安装 modelscope:
pip3 install -U modelscope
# 对于中国的用户,您可以使用以下命令进行安装:
# pip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple
1.5 如何从本地模型路径推断(可选)
通过 modelscope-sdk 将模型下载到本地目录
from modelscope.hub.snapshot_download import snapshot_downloadlocal_dir_root = "./models_from_modelscope"
model_dir = snapshot_download('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', cache_dir=local_dir_root)
或者通过 git lfs 将模型下载到本地目录
git lfs install
# git clone https://www.modelscope.cn/<namespace>/<model-name>.git
git clone https://www.modelscope.cn/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git
使用本地模型路径进行推断
local_dir_root = "./models_from_modelscope/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
inference_pipeline = pipeline(task=Tasks.auto_speech_recognition,model=local_dir_root,
)
2 使用funASR
2.1 使用funASR
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasksinference_pipeline = pipeline(task=Tasks.auto_speech_recognition,model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',model_revision="v1.2.4")rec_result = inference_pipeline(audio_in='1001.wav')print(rec_result['sentences'])with open('result.txt', 'w', encoding='utf-8') as f:print(rec_result, file=f)print(rec_result)
2.2 使用 pyannote.audio 进行语者分离
第一步:安装依赖
pip install pyannote.audio
第二步:创建key
https://huggingface.co/settings/tokens
第三步:测试pyannote.audio
from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token="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")# send pipeline to GPU (when available)
import torch
pipeline.to(torch.device("cuda"))# apply pretrained pipeline
diarization = pipeline("1002.wav")
print(diarization)
# print the result
for turn, _, speaker in diarization.itertracks(yield_label=True):print(f"start={turn.start:.1f}s stop={turn.end:.1f}s speaker_{speaker}")
# start=0.2s stop=1.5s speaker_0
# start=1.8s stop=3.9s speaker_1
# start=4.2s stop=5.7s speaker_0
# ...
2.3 funAS整合pyannote.audio
1.1编写算法
from pyannote.core import Segment, Annotation, Timelinedef get_text_with_timestamp(transcribe_res):timestamp_texts = []for item in transcribe_res['segments']:start = item['start']end = item['end']text = item['text']timestamp_texts.append((Segment(start, end), text))print(timestamp_texts)return timestamp_textsdef get_text_with_timestampFun(transcribe_res):print(transcribe_res['sentences'])timestamp_texts = []for item in transcribe_res['sentences']:start = item['start']/1000.0end = item['end']/1000.0text = item['text']timestamp_texts.append((Segment(start, end), text))return timestamp_textsdef add_speaker_info_to_text(timestamp_texts, ann):spk_text = []for seg, text in timestamp_texts:#这行代码的作用是在给定的时间段 seg 中根据说话人分离结果 ann 获取出现次数最多的说话人。spk = ann.crop(seg).argmax()spk_text.append((seg, spk, text))return spk_textdef merge_cache(text_cache):sentence = ''.join([item[-1] for item in text_cache])spk = text_cache[0][1]start = text_cache[0][0].startend = text_cache[-1][0].endreturn Segment(start, end), spk, sentencePUNC_SENT_END = ['.', '?', '!', '。', '?', '!']def merge_sentence(spk_text):merged_spk_text = []pre_spk = Nonetext_cache = []for seg, spk, text in spk_text:if spk != pre_spk and pre_spk is not None and len(text_cache) > 0:merged_spk_text.append(merge_cache(text_cache))text_cache = [(seg, spk, text)]pre_spk = spkelif text[-1] in PUNC_SENT_END:text_cache.append((seg, spk, text))merged_spk_text.append(merge_cache(text_cache))text_cache = []pre_spk = spkelse:text_cache.append((seg, spk, text))pre_spk = spkif len(text_cache) > 0:merged_spk_text.append(merge_cache(text_cache))return merged_spk_textdef diarize_text(transcribe_res, diarization_result):timestamp_texts = get_text_with_timestampFun(transcribe_res)spk_text = add_speaker_info_to_text(timestamp_texts, diarization_result)res_processed = merge_sentence(spk_text)return res_processeddef write_to_txt(spk_sent, file):with open(file, 'w') as fp:for seg, spk, sentence in spk_sent:line = f'{seg.start:.2f} {seg.end:.2f} {spk} {sentence}\n'fp.write(line)
1.2调用
import os
import whisper
from pyannote.audio import Pipeline
from pyannote_funasr.utils import diarize_text
import concurrent.futures
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks# 输出位置
output_dir = '/root/autodl-tmp/pyannote-whisper'from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks# 语音转文字的模型
inference_pipeline = pipeline(task=Tasks.auto_speech_recognition,model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',model_revision="v1.2.4")# rec_result = inference_pipeline(audio_in='1002.wav')# with open('result.txt', 'w', encoding='utf-8') as f:
# print(rec_result, file=f)# # print(rec_result)def process_audio(file_path):print("----------1")asr_result = inference_pipeline(audio_in=file_path) print("-----------2.2")# 语者分离pipelinepipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token="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")# 使用显卡加速import torchpipeline.to(torch.device("cuda"))#num_speakers 几个说话者,可以不带diarization_result = pipeline(file_path, num_speakers=2)# 转文字结果print(diarization_result)# 进行语着分离final_result = diarize_text(asr_result, diarization_result)print("-----------5")# 输出结果output_file = os.path.join(output_dir, os.path.basename(file_path)[:-4] + '.txt')with open(output_file, 'w') as f:for seg, spk, sent in final_result:line = f'{seg.start:.2f} {seg.end:.2f} {spk} {sent}\n'f.write(line)print(line)# 判断输出文件夹是否存在
if not os.path.exists(output_dir):os.makedirs(output_dir)
wave_dir = '/root/autodl-tmp/pyannote-whisper'
# 获取当前目录下所有wav文件名
wav_files = [os.path.join(wave_dir, file) for file in os.listdir(wave_dir) if file.endswith('.wav')]# 处理每个wav文件
with concurrent.futures.ThreadPoolExecutor() as executor:executor.map(process_audio, wav_files)print('处理完成!')
3.微调
微调.py
import os
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from modelscope.msdatasets.audio.asr_dataset import ASRDatasetdef modelscope_finetune(params):if not os.path.exists(params.output_dir):os.makedirs(params.output_dir, exist_ok=True)# dataset split ["train", "validation"]ds_dict = ASRDataset.load(params.data_path, namespace='speech_asr')kwargs = dict(model=params.model,data_dir=ds_dict,dataset_type=params.dataset_type,work_dir=params.output_dir,batch_bins=params.batch_bins,max_epoch=params.max_epoch,lr=params.lr)trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)trainer.train()if __name__ == '__main__':from funasr.utils.modelscope_param import modelscope_argsparams = modelscope_args(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")params.output_dir = "./checkpoint" # 模型保存路径params.data_path = "speech_asr_aishell1_trainsets" # 数据路径,可以为modelscope中已上传数据,也可以是本地数据params.dataset_type = "small" # 小数据量设置small,若数据量大于1000小时,请使用largeparams.batch_bins = 2000 # batch size,如果dataset_type="small",batch_bins单位为fbank特征帧数,如果dataset_type="large",batch_bins单位为毫秒,params.max_epoch = 50 # 最大训练轮数params.lr = 0.00005 # 设置学习率modelscope_finetune(params)