Pytorch目标分类深度学习自定义数据集训练

目录

一,Pytorch简介;

二,环境配置;

三,自定义数据集;

四,模型训练;

五,模型验证;


一,Pytorch简介;

        PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch 基于 Python: PyTorch 以 Python 为中心或“pythonic”,旨在深度集成 Python 代码,而不是作为其他语言编写的库的接口。Python 是数据科学家使用的最流行的语言之一,也是用于构建机器学习模型和 ML 研究的最流行的语言之一。由于其语法类似于 Python 等传统编程语言,PyTorch 比其他深度学习框架更容易学习。

二,环境配置;

       版本:

        系统:window10;

        Python:3.11.5;

        pytorch:2.0.1;

       Python安装:

        Python官网:python.org;

        下载3.11.5版本Python安装版进行安装;

        配置Python环境变量;

        在系统变量path中添加Python的bin路径和Script路径;

        查看Python是否安装成功;

        

        正常如上显示表示安装成功。

        同时查看Python对应的Pip版本;

        Pytorch安装:

        pytorch官网:PyTorch;

        

        进入Pytorch官网后点击左上角Get Started查看Pytorch对于的Python版本,GPU版本。默认安装的是CPU版本,本文使用Pip安装Pytorch方式,直接运行Run this Command会报错,安装了几次都不行,所以自己找对应的安装文件进行安装更方便。

        根据Pytorch官网介绍的对应版本找到我们需要的依赖文件。

        网址:download.pytorch.org/whl/torch_stable.html

        

        找到对应安装的版本,cu开头表示是GPU版本和版本号,torch后面对应的是Pytorch版本号,cp对应Python版本;点击下载安装文件;

        下载好以后打开文件所在位置,进入window命令界面,执行命令;

pip install torch-2.0.1+cu117-cp311-cp311-win_amd64.whl

        英伟达GPU安装:

        选择对应的GPU版本安装,安装完成后验证下是否安装成功,正常显示版本表示安装成功。

三,自定义数据集;

        从网上下载数据集,按照文件夹分类,首先将数据集制作成包含图片路径,和对应索引的csv文件。

import torch
import os, glob
import random, csv# 所有自定义数据集的一个母类
from torch.utils.data import Dataset, DataLoader
# 常用的图片变换器
from torchvision import transforms
# 从图片读取出数据
from PIL import Image# 自定义数据集的类,继承自Dataset
class Pokemon(Dataset):# 一、初始化函数init# 第一个参数root:总的图片所在的位置,可以是任意的位置,我们的图片可以放在任意的位置,我们这里就存储在当前目录文件夹下。# 第二个参数resize:图片输出的size,是由这个参数所进行设定。# 第三个参数mode:这里我们需要做train、validation以及test,对应这三种数据结构,因此我们用一个list[0,1,2]来代表是哪个模式。def __init__(self, root, resize, mode):# 先调用母类的初始化函数:super(Pokemon, self).__init__()# 1、首先我们将这个参数保存下来self.root = rootself.resize = resize# 2、给每一个分类做一个映射,即当前的皮卡丘、妙蛙种子等这个string类型所对应的label是多少,这个是需要我们人为进行编码的。self.name2label = {}  # 用字典来表示映射关系# 通过循环方式,将root路径下的文件夹名进行编码for name in sorted(os.listdir(os.path.join(root))):# 过滤掉非文件夹:如果不是dir,就过滤掉,此外我们还通过sorted排序的方法,将键值对关系固定下来if not os.path.isdir(os.path.join(root, name)):continue# 文件名做key,当前name2label的长度做valueself.name2label[name] = len(self.name2label.keys())print(self.name2label)# image, labelself.load_csv('images.csv')# 二、创建一个csv,用于保存图片全路径和对应的标签label# 这个函数接受一个参数filename# 这个函数中需要将所有图片都load进来def load_csv(self, filename):images = []for name in self.name2label.keys():# 类别信息我们可以使用路径来判断# 上面路径的mewtwo就是类别images += glob.glob(os.path.join(self.root, name, '*.png'))images += glob.glob(os.path.join(self.root, name, '*.jpg'))images += glob.glob(os.path.join(self.root, name, '*.jpeg'))print(len(images), images)# 将images顺序打乱random.shuffle(images)# 打开这个文件with open(os.path.join(self.root, filename), mode='w', newline='') as f:# 新建writer,获得csv这个文件对象writer = csv.writer(f)for img in images:  # 获得每行信息# 通过分割符,将每行信息的内容分割开,取导数第二个,类型name = img.split(os.sep)[-2]# 通过获取的类型名来获取labellabel = self.name2label[name]# 将这个label信息写到csv中# csv是以逗号作为分割的writer.writerow([img, label])print('writen into csv file:', filename)# 三、完成两个自定义的逻辑# 1、样本的总体数量(图片总体数量),返回的是一个数字,总体图片大概有1168张,60%用于training,因此返回6-7百张图片def __len__(self):pass# 2、用于返回当前index上面元素的值,这里是返回两个数据:# 需要返回当前image的data,以及image所对应的label[0,1,2,3,4]def __getitem__(self, idx):pass# 创建一个调试函数:
def main():db = Pokemon('F:\\train', 224, 'train')if __name__ == '__main__':main()

        将图片路径改成自己数据的文件夹路径,运行代码在对应路径下生成.csv格式文件

        类别索引根据文件夹种类顺序生成,要和csv文件中索引对应。数据集制作完成后就可以开始训练了。

        首先定义加载数据集类;

import torch
import os, glob
import random, csv# 所有自定义数据集的一个母类
from torch.utils.data import Dataset, DataLoader# 常用的图片变换器
from torchvision import transforms
# 从图片读取出数据
from PIL import Image# 自定义数据集的类,继承自Dataset
class Pokemon(Dataset):# 一、初始化函数init# 第一个参数root:总的图片所在的位置,可以是任意的位置,我们的图片可以放在任意的位置,我们这里就存储在当前目录文件夹下。# 第二个参数resize:图片输出的size,是由这个参数所进行设定。# 第三个参数mode:这里我们需要做train、validation以及test,对应这三种数据结构,因此我们用一个list[0,1,2]来代表是哪个模式。def __init__(self, root, resize, mode):# 先调用母类的初始化函数:super(Pokemon, self).__init__()# 1、首先我们将这个参数保存下来self.root = rootself.resize = resize# 2、给每一个分类做一个映射,这个string类型所对应的label是多少,这个是需要我们人为进行编码的。self.name2label = {}  # 用字典来表示映射关系# 通过循环方式,将root路径下的文件夹名进行编码for name in sorted(os.listdir(os.path.join(root))):# 过滤掉非文件夹:如果不是dir,就过滤掉,此外我们还通过sorted排序的方法,将键值对关系固定下来if not os.path.isdir(os.path.join(root, name)):continue# 文件名做key,当前name2label的长度做valueself.name2label[name] = len(self.name2label.keys())# print(self.name2label)# 将self.load_csv的返回值images, labels赋予self.images, self.labelsself.images, self.labels = self.load_csv('images.csv')# 四、不同比例模式下对图片数量进行划分if mode == 'train':  # 取60%做training# len(self.images)的长度是1167,取60%做为train模式的图片self.images = self.images[:int(0.6 * len(self.images))]self.labels = self.labels[:int(0.6 * len(self.labels))]elif mode == 'val':  # 取20%做validation, 60%-80%self.images = self.images[int(0.6 * len(self.images)):int(0.8 * len(self.images))]self.labels = self.labels[int(0.6 * len(self.labels)):int(0.8 * len(self.labels))]else:  # mode为test,取80%到最末尾self.images = self.images[int(0.8 * len(self.images)):]self.labels = self.labels[int(0.8 * len(self.labels)):]# 二、创建一个csv,用于保存图片全路径和对应的标签label# 这个函数接受一个参数filename# 这个函数中需要将所有图片都load进来def load_csv(self, filename):# 需要一个判断,如果文件不存在,就需要创建csv,直接读取创建好的csv文件内容即可:# 如果不存在,就需要创建csvif not os.path.exists(os.path.join(self.root, filename)):images = []for name in self.name2label.keys():# 类别信息我们可以使用路径来判断# 上面路径的mewtwo就是类别images += glob.glob(os.path.join(self.root, name, '*.png'))images += glob.glob(os.path.join(self.root, name, '*.jpg'))images += glob.glob(os.path.join(self.root, name, '*.jpeg'))print(len(images), images)# 将images顺序打乱random.shuffle(images)# 打开这个文件with open(os.path.join(self.root, filename), mode='w', newline='') as f:# 新建writer,写入csv这个文件对象writer = csv.writer(f)for img in images:# 通过分割符,将每行信息的内容分割开,取导数第二个,类型name = img.split(os.sep)[-2]# 通过获取的类型名来获取labellabel = self.name2label[name]# 将这个label信息写到csv中# csv是以逗号作为分割的writer.writerow([img, label])print('writen into csv file:', filename)# 三、读取csv文件过程:# 这里需要在开头有一个判断,如果csv存在,就不用写入csv了,直接进行读取# 下次运行的时候只需加载进来即可images, labels = [], []with open(os.path.join(self.root, filename)) as f:# 新建reader,读取csv这个文件对象reader = csv.reader(f)for row in reader:img, label = rowlabel = int(label)  # 将这个label转码为int类型# 将img每个图片路径,以及label保存在建立好的列表对象中。images.append(img)labels.append(label)assert len(images) == len(labels)return images, labels# 完成两个自定义的逻辑:# 1、样本的总体数量(图片总体数量),返回的是一个数字,总体图片大概有1168张,60%用于training,因此返回6-7百张图片# 五、完成总体样本数量函数的内容def __len__(self):# 这里的样本长度是跟模型类别来决定的,上面已经根据不同模型类型划分了样本数量了。# 不同模式下,样本长度是不同的。# 因此这里的总体样本长度,就是不同模式下的样本数量。return len(self.images)# 九、解决normalize处理后,visdom无法正常显示的问题# 这里传入的参数x是normalize过后的def denormalize(self, x_hat):mean = [0.485, 0.456, 0.406]std = [0.229, 0.224, 0.225]mean = torch.tensor(mean).unsqueeze(1).unsqueeze(1)std = torch.tensor(std).unsqueeze(1).unsqueeze(1)print('mean.shape,std.shape:', mean.shape, std.shape)x = x_hat * std + meanreturn x# 2、用于返回当前index上面元素的值,这里是返回两个数据:# 需要返回当前image的data,以及image所对应的label[0,1,2,3,4]# 六、完成index与样本的一一对应def __getitem__(self, idx):# idx数值范围是[0-len(images)]# self.images保存了所有的数据;self.labels保存了所有数据对应的label信息;# img是一个string类型(还不是具体的图片,只是路径)# label是一个整数类型img, label = self.images[idx], self.labels[idx]# 这里就需要将img所对应的路径读取出图片,并转为tensor类型# 这里我们可以Compose组合操作步骤# 八、增加数据预处理的工作,在Compose中增加这些内容,data augmentation数据增强# 这里我们做放大、旋转、裁切这三个数据增强的操作tf = transforms.Compose([# 这里需要将路径变成具体的图片数据类型# 即:string path => image datalambda x: Image.open(x).convert('RGB'),# Resize工作,这里的size是我们实例化时的self.resize的值# 1、data augmentation放大:在Resize设置的基础上,稍微调大一些size, 调整为1.25倍transforms.Resize((int(self.resize * 1.25), int(self.resize * 1.25))),# 2、data augmentation旋转:增加随机旋转,注意:这里旋转角度不能太大,会增加学习的难度。transforms.RandomRotation(15),# 3、data augmentation中心裁切:裁切为我们所需要的大小transforms.CenterCrop(self.resize),# 将数据变为tensor类型transforms.ToTensor(),# 4、normalize处理,希望图片数值范围在0左右分布,而不希望数值只分布在0的右侧或只在左侧# 其中参数统计的所有image net数据集几百万张图片的mean=[R的mean,G的mean,B的mean]和std=[R的方差,G的方差,B的方差]# 基本上这个数值是通用的# 数据通过Normalize处理后,就是在-1到1之间分布了。transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])img = tf(img)label = torch.tensor(label)return img, label# 创建一个调试函数:
def main():# 七、验证自定义数据集# 验证需要一些辅助函数,用visdom做一些可视化。import visdomimport timeimport torchvision  # 通过API较为简便的加载自定义数据集,需要引入torchvision# 创建一个visdom这个对象viz = visdom.Visdom()# 十一、通过API较为简便的加载自定义数据集(前提是数据集按照不同类型存储在对应类型命名的文件夹下面,并且这些不同类别的文件夹都存储在统一的一个文件夹下,只有这种固定的二级目录存储形式才能用这个API进行加载。)tf = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor()])# 参数1:传入路径# 参数2:变换器,这个变换器就是进行resize操作db = torchvision.datasets.ImageFolder(root='F:\\train', transform=tf)loader = DataLoader(db, batch_size=32, shuffle=True)print(db.class_to_idx)  # 通过这个就能知道不同类别是如何编码的了。if __name__ == '__main__':main()

        将上面代码修改即可;

四,模型训练;

        这里我们需要用到可视化工具来查看我们训练效果。

        安装visdom:

pip install visdom

        在pycharm命令界面启动visdom:

python -m visdom.server  

        正常启动在浏览器输入localhost:8097打开可视化界面;

        准备工作完成,编写模型训练代码,这么我们直接使用Pytorch自带的神经网络resnet18模型;

import torch
from torch import optim, nn
import visdom
import torchvision
from torch.utils.data import DataLoaderfrom pokemon import Pokemonfrom torchvision.models import resnet18  # 这个resnet18是已经training好的状态from utils import Flatten  # 用于打平,这个是自己来实现的打平层batchsz = 32
lr = 1e-3
epochs = 40device = torch.device('cuda')
torch.manual_seed(1234)  # 这个是随机数种子,保证每次都能复现出来。# 这里是需要实例化Pokemon类
# 这里之所以使用224,是因为是ResNet最适合的大小。
train_db = Pokemon('F:\\train', 224, 'train')
val_db = Pokemon('F:\\train', 224, 'val')
test_db = Pokemon('F:\\train', 224, 'test')# 批量加载数据
# 参数num_workers表示工作线程数:
train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True, num_workers=4)val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2)test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)# 需要把train的进度保存下来,需要用到visdom
viz = visdom.Visdom()# 建立一个测试函数:测试函数针对validation和test功能是一样的
def evalute(model, loader):# 用于统计总的预测正确的数量correct = 0# 总的测试数量total = len(loader.dataset)for x, y in loader:x, y = x.to(device), y.to(device)with torch.no_grad():  # test和validation是不需要梯度信息的logits = model(x)pred = logits.argmax(dim=1)  # 最大的值所在的位置# 总的预测正确的数量,累加操作correct += torch.eq(pred, y).sum().float().item()accuracy = correct / totalreturn accuracydef main():# 实例化模型# 使用已经训练好的resnet18模型,一定要设置这个参数pretrained=Truetrained_model = resnet18(pretrained=True)# 我们要使用训练好的resnet18模型的A部分,即取出前17层:# Sequential结束的是一个打散的数据,所有我们在list前加一个*,*args:接收若干个位置参数,转换成元组tuple形式。model = nn.Sequential(*list(trained_model.children())[:-1]  # model的前17层(即A部分)返回的结果是:[b,512,1,1], Flatten()  # 打平操作从[b,512,1,1]=>[b,512], nn.Linear(512, 14)  # 这层是最后那层,用于从新学习分成14类。(第二个参数为自定义数据集实际训练种类数量,根据自己数据集的种类数据传递实际值)).to(device)# 我们从已经训练好的resnet18开始训练效果会好很多# # 这里我们测试一下# x = torch.randn(2,3,224,224)# print(model(x).shape)#打印结果为:torch.Size([2, 5])# #这样就实现了transfer learning# ======================================================# 创建一个优化器Adam,这个优化器比较好optimizer = optim.Adam(model.parameters(), lr=lr)# Loss的计算方法:CrossEntropyLoss;# 这个Loss所接受的参数是logits,logits是不需要经过一个softmax的,只需要得到logits即可。criteon = nn.CrossEntropyLoss()# 用于保存模型的训练状态best_acc, best_epoch = 0, 0# step每次都是从0开始的,因此这里我们创建一个全局stepglobal_step = 0# 用visdom工具保存下accuracy和loss# training和loss的曲线# x=0,y=-1是初始状态viz.line([0], [-1], win='loss', opts=dict(title='loss(损失值)'))# training和validation accuracy的曲线viz.line([0], [-1], win='val_acc', opts=dict(title='val_acc(准确率)'))# training逻辑for epoch in range(epochs):for step, (x, y) in enumerate(train_loader):# x:[b,3,224,224]; y:[b]x, y = x.to(device), y.to(device)  # x和y都转移到cuda上面# 执行forward函数logits = model(x)  # 学出的预测结果# 在pytorch中crossEntropyLoss中,传入的真实值y不需要进行one-hot操作,不需要做one-hot编码,会在内部做one-hot。# 所以我们直接传入y就可以了。loss = criteon(logits, y)  # 预测结果与真实值进行交叉熵计算# 前向传播和迭代过程# 优化器optimizer.zero_grad()loss.backward()optimizer.step()# 用visdom工具保存下accuracy和loss# 每一个step我都要记录下来# validation和loss的曲线# x=loss.item()loss是一个tensor,因此需要通过item转为具体数值,y=-1是初始状态# 参数update为append,表示添加到曲线的末尾。viz.line([loss.item()], [global_step], win='loss', update='append')global_step += 1# 这里我们每完成两个epoch就做一组validationif epoch % 1 == 0:# 我们根据validation accuracy来选择要不要保存这个模型的训练状态。val_acc = evalute(model, val_loader)# 如果当前accuracy大于best_acc,就保存当前的状态:if val_acc > best_acc:best_epoch = epochbest_acc = val_acc# 保存当前模型的状态:# 参数一:模型状态值# 参数二:模型状态保存的文件名,文件名后缀随意torch.save(model, 'best-pro.pth')# validation和 accuracy的曲线# 这里val_acc是数值型,所以不需要转换。viz.line([val_acc], [global_step], win='val_acc', update='append')print('best acc:', best_acc, 'best epoch:', best_epoch)# 从最好的状态加载模型:# model.load_state_dict(torch.load('best-pro.ptl'))# print('loaded from check point!')## # 上面加载了最好的模型状态,这里使用的模型也是最好的状态时的模型# test_acc = evalute(model, test_loader)# print('test_acc:', test_acc)if __name__ == '__main__':main()

这里我们用到了一个util:

from matplotlib import pyplot as plt
import torch
from torch import nn# 该函数是一个标准的打平层
class Flatten(nn.Module):# 该文件utils包含一些辅助函数。def __init__(self):super(Flatten, self).__init__()def forward(self, x):shape = torch.prod(torch.tensor(x.shape[1:])).item()return x.view(-1, shape)# 该函数是将img打印到matplotlib上
def plot_image(img, label, name):fig = plt.figure()for i in range(6):plt.subplot(2, 3, i + 1)plt.tight_layout()plt.imshow(img[i][0] * 0.3081 + 0.1307, cmap='gray', interpolation='none')plt.title("{}: {}".format(name, label[i].item()))plt.xticks([])plt.yticks([])plt.show()

运行函数打开可视化界面,查看训练情况;

        刚开始训练的情况,使用数据量大概1.6w张最终结果大概是准确率96%。已经非常好了。

五,模型验证;

import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Imagedevice = torch.device('cuda')def main():labels = ['兔子', '吊兰', '文竹', '月季', '枸骨', '狗', '狮子', '猫', '绿萝', '老虎', '菊花', '蛇', '迎春花', '龟背竹']image_path = "C:/Users/LENOVO/Desktop/dog.png"image = Image.open(image_path)image = image.resize((256, 256), Image.BILINEAR).convert("RGB")image = np.array(image)to_tensor = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])image = to_tensor(image)image = torch.unsqueeze(image, 0)image = image.cuda()model = torch.load("刚才训练好的模型")model.eval()model.to(device)output = model(image)output1 = F.softmax(output, dim=1)predicted = torch.max(output1, dim=1)[1].cpu().item()outputs2 = output1.squeeze(0)confidence = outputs2[predicted].item()confidence = round(confidence, 3)print("识别结果: ", labels[predicted], " 准确率为: ", confidence * 100, "%")if __name__ == '__main__':main()

        测试图片:

        labels为我们训练的类别数组,和cvs的索引对应。

多次测试结果全对,准确率不低于95%。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/96904.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

淘宝商品数据分析接口,淘宝商品详情数据接口

淘宝商品数据分析接口可以通过淘宝API进行获取。 淘宝API是一种程序接口,通过编程的方式,让开发者能够通过HTTP协议直接访问淘宝平台的数据,包括商品信息、店铺信息、物流信息等,从而实现淘宝平台的数据开放。 通过淘宝API提供的…

外卖小程序源码的安全性和隐私考虑

外卖小程序源码的使用正在成为数字餐饮业的主流选择之一。然而,随着外卖业务的增长,安全性和隐私保护变得至关重要。在本文中,我们将探讨外卖小程序源码的安全性和隐私问题,并提供一些代码示例,以帮助开发者确保其应用…

回顾C++

大一的时候学过C,当时学得也不深,考试也是糊弄过去的,最近刷力扣的时候,决定一边刷题,一边复习和学习C,在此记录一些C的知识点。反正遇到一点就记录一点,会一直更新。

c++解压压缩包文件

功能实现需要依赖相关头文件和库文件&#xff0c;我这里的是64位的。需要的可以在这下载&#xff1a;https://download.csdn.net/download/bangtanhui/88403596 参考代码如下&#xff1a; #include <zip.h> #pragma comment(lib,"libzip.lib")//解压压缩包 /…

性能测试笔记

一、性能测试的概念 性能测试的概念 使用自动化工具&#xff0c;模拟不同的场景&#xff0c;对软件各项性能指标进行测试和评估的过程 性能测试的目的 评估当前系统能力&#xff0c;出现性能bug后&#xff0c;优化性能&#xff1a;预测未来的性能需求是否满足 例如&#xf…

Web:前端常用的几种Http请求GET和POST样例

1、简述 在Web开发过程中&#xff0c;少不了发起Http请求服务端的接口数据&#xff0c;在不同的框架中使用了不同的Http请求方式&#xff0c;常用的请求有fetch、 ajax、 axios、XMLHttpRequest、request&#xff0c;以下样例仅供参考。 2、Fetch Fetch API 是一种 JavaScr…

Vue Router(二)

目录 一、嵌套路由 1、路由定义 2、代码例子 3、重定向 二、懒加载 1、缘由 2、代码例子 三、导航守卫 1、全局前置守卫 2、全局后置守卫 3、meta元信息 四、生命周期 1、解释 2、执行顺序 3、例子 五、keep-alive组件缓存&#xff08;保活&#xff09; 1、介…

【目标检测】——PE-YOLO精读

yolo&#xff0c;暗光目标检测 论文&#xff1a;PE-YOLO 1. 简介 卷积神经网络&#xff08;CNNs&#xff09;在近年来如何推动了物体检测的发展。许多检测器已经被提出&#xff0c;而且在许多基准数据集上的性能正在不断提高。然而&#xff0c;大多数现有的检测器都是在正常条…

HTTPS 加密工作过程

引言 HTTP 协议内容都是按照文本的方式明文传输的&#xff0c;这就导致在传输过程中出现一些被篡改的情况。例如臭名昭著的运营商劫持。显然&#xff0c; 明文传输是比较危险的事情&#xff0c;为此引入 HTTPS &#xff0c;HTTPS 就是在 HTTP 的基础上进行了加密, 进一步的来保…

九、互联网技术——记忆背诵

文章目录 一、网络操作系统的功能和特性二、网络操作系统的逻辑构成四、主动攻击和被动攻击五、安全机制和安全服务六、信息与数据七、数据处理与数据管理八、数据模型九、概念模型的E-R表示方法十、四种数据模型十一、数据库系统组成十二、DBMS主要功能十三、数据库系统的3级模…

【C++初阶(二)C——C++过渡必看】

文章目录 前言一、C关键字&#x1f34e;二、命名空间&#x1f345;1.命名空间的定义&#x1f352;2.命名空间使用&#x1f353; 三、C输入&输出&#x1f351;四、缺省参数&#x1fad1;1. 缺省参数概念&#x1f349;2. 缺省参数分类&#x1f95d; 五、函数重载&#x1f965…

集中发现服务DCPSInfoRepo通信端口和ORB交互流程

OpenDDS集中发现服务DCPSInfoRepo,为OpenDDS的pub和sub通信终端提供主题匹配和通信协商和中介服务,是基于TAO的ORB机制完成的,GIOP协议。 1、集中发现服务DCPSInfoRepo的相关通信端口 1)集中发现服务DCPSInfoRepo通信端口 DCPSInfoRepo -ORBListenEndpoints iiop://192.…

【maven】idea中基于maven-webapp骨架创建的web.xml问题

IDEA中基于maven-webapp骨架创建的web工程&#xff0c;默认的web.xml是这样的。 <!DOCTYPE web-app PUBLIC"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN""http://java.sun.com/dtd/web-app_2_3.dtd" ><web-app><display-name…

mac文件为什么不能拖进U盘?

对于Mac用户来说&#xff0c;可能会遭遇一些烦恼&#xff0c;比如在试图将文件从Mac电脑拖入U盘时&#xff0c;却发现文件无法成功传输。这无疑给用户带来了很大的不便。那么&#xff0c;mac文件为什么不能拖进U盘&#xff0c;看完这篇你就知道了。 一、U盘的读写权限问题 如果…

模拟滤波器的基础知识和设计

信号处理工作中滤波器的应用是非常广泛的&#xff0c;可以分成模拟滤波器和数字滤波器两种&#xff0c;数字滤波器主要包括两种&#xff0c;IIR和FIR&#xff0c;这两种滤波器后面统一说&#xff0c;今天先来说一说模拟滤波器&#xff08;主要是我先用Python实现了Matlab书里面…

【iOS】——仿写计算器

文章目录 一、实现思路二、实现方法三、判错处理 一、实现思路 先搭建好MVC框架&#xff0c;接着在各个模块中实现各自的任务。首先要创建好UI界面&#xff0c;接着根据UI界面的元素来与数据进行互动&#xff0c;其中创建UI界面需要用到Masonry布局。 二、实现方法 在calcu…

八、互联网技术——物联网

文章目录 一、智慧物联案例分析二、M2M技术三、数据保护综合案例分析一、智慧物联案例分析 智能物流是一种典型的物联网应用。一个物流仓储管理系统架构如下图所示: [问题1] 图中的三层功能:仓库物品识别、网络接入、物流管理中心,分别可对应到物联网基本架构中的哪一层? …

分页查询(关键词: limit)

MySQL从小白到总裁完整教程目录:https://blog.csdn.net/weixin_67859959/article/details/129334507?spm1001.2014.3001.5502 比如现在有一张表emp有15条数据 我想每页只显示5条数据,分3页,这样看起来简捷一些,我该怎么实现呢 语法格式: select */列名 from 表名 limit 初…

Dubbo3应用开发—Dubbo3注册中心(zookeeper、nacos、consul)的使用

Dubbo3注册中心的使用 zookeeper注册中心的使用 依赖引入 <dependency><groupId>org.apache.dubbo</groupId><artifactId>dubbo-dependencies-zookeeper-curator5</artifactId><version>${dubbo.version}</version><type>p…

三十一、【进阶】B+树的演变过程

1、B树简单介绍 &#xff08;1&#xff09;介绍&#xff1a;B树也属于B树&#xff0c;是B树的变种 &#xff08;2&#xff09;特点&#xff1a;所有的数据都位于叶子节点上&#xff0c;叶子节点上的所有元素形成了一个单项链表 &#xff08;3&#xff09;图示&#xff1a; 2…