利用无锁工作队列的Web服务器设计
项目地址https://github.com/whitehat32/webserver_no_lock
基本流程与牛客版的一致,下面放一个牛客版的流程框图
引言
在Web服务器的设计与实现中,性能优化是永远不会过时的话题。一般来说,Web服务器需要能够有效地处理大量并发请求。在多线程环境中,工作队列的设计尤为关键。传统的工作队列通常涉及使用锁(例如互斥锁)来确保线程安全,但这可能导致性能瓶颈。本博客文章将探讨一种全新的Web服务器设计,其主要特点是工作队列在访问任务时不使用锁。
为什么避免使用锁?
在多线程环境下,许多Web服务器使用锁来确保多线程能够安全地访问共享资源。但是,锁操作可能导致线程阻塞,进而增加CPU上下文切换,影响性能。
/* 线程池部分的代码 */
#ifndef THREADPOOL_H
#define THREADPOOL_H
// ...(省略部分代码)
std::thread([pool = pool_, p=i] {while(true) {if(!pool->tasks[p].empty()) {std::function<void()> task;if(pool->tasks[p].pop(task)) task();else continue;} else if(pool->isClosed) break;}
}).detach();
// ...(省略部分代码)
#endif //THREADPOOL_H
上面的代码片段展示了如何在多线程环境中避免使用锁。这是通过使用无锁队列(Lock-Free Queue)实现的,该队列使用原子操作来确保线程安全。
无锁工作队列的设计与实现
数据结构选择
本博文选择了单生产者单消费者(SPSC)无锁队列作为基础数据结构。这样可以利用原子操作来避免传统锁带来的性能问题。
// 无锁队列定义
/** File: SpScLockFreeQueue.h* Author: Sander Jobing** Created on July 29, 2017, 5:17 PM** This class implements a Single Producer - Single Consumer lock-free and* wait-free queue. Only 1 thread can fill the queue, another thread can read* from the queue, but no more threads are allowed. This lock-free queue* is a fifo queue, the first element inserted is the first element which* comes out.** Thanks to Timur Doumler, Juce* https://www.youtube.com/watch?v=qdrp6k4rcP4*/#ifndef SPSCLOCKFREEQUEUE_H
#define SPSCLOCKFREEQUEUE_H#include <array>
#include <atomic>
#include <cassert>template <typename T, size_t fixedSize>
class SpScLockFreeQueue
{
public:///---------------------------------------------------------------------------/// @brief Constructor. Asserts when the underlying type is not lock freeSpScLockFreeQueue(){std::atomic<size_t> test;assert(test.is_lock_free());}SpScLockFreeQueue(const SpScLockFreeQueue& src) = delete;virtual ~SpScLockFreeQueue(){}///---------------------------------------------------------------------------/// @brief Returns whether the queue is empty/// @return True when emptybool empty() const noexcept{bool isEmpty = false;const size_t readPosition = m_readPosition.load();const size_t writePosition = m_writePosition.load();if (readPosition == writePosition){isEmpty = true;}return isEmpty;}///---------------------------------------------------------------------------/// @brief Pushes an element to the queue/// @param element The element to add/// @return True when the element was added, false when the queue is fullbool push(const T& element){const size_t oldWritePosition = m_writePosition.load();const size_t newWritePosition = getPositionAfter(oldWritePosition);const size_t readPosition = m_readPosition.load();if (newWritePosition == readPosition){// The queue is fullreturn false;}m_ringBuffer[oldWritePosition] = element;m_writePosition.store(newWritePosition);return true;}///---------------------------------------------------------------------------/// @brief Pops an element from the queue/// @param element The returned element/// @return True when succeeded, false when the queue is emptybool pop(T& element){if (empty()){// The queue is emptyreturn false;}const size_t readPosition = m_readPosition.load();element = std::move(m_ringBuffer[readPosition]);m_readPosition.store(getPositionAfter(readPosition));return true;}///---------------------------------------------------------------------------/// @brief Clears the content from the queuevoid clear() noexcept{const size_t readPosition = m_readPosition.load();const size_t writePosition = m_writePosition.load();if (readPosition != writePosition){m_readPosition.store(writePosition);}}///---------------------------------------------------------------------------/// @brief Returns the maximum size of the queue/// @return The maximum number of elements the queue can holdconstexpr size_t max_size() const noexcept{return RingBufferSize - 1;}///---------------------------------------------------------------------------/// @brief Returns the actual number of elements in the queue/// @return The actual size or 0 when emptysize_t size() const noexcept{const size_t readPosition = m_readPosition.load();const size_t writePosition = m_writePosition.load();if (readPosition == writePosition){return 0;}size_t size = 0;if (writePosition < readPosition){size = RingBufferSize - readPosition + writePosition;}else{size = writePosition - readPosition;}return size;}static constexpr size_t getPositionAfter(size_t pos) noexcept{return ((pos + 1 == RingBufferSize) ? 0 : pos + 1);}private:// A lock-free queue is basically a ring buffer.static constexpr size_t RingBufferSize = fixedSize + 1;std::array<T, RingBufferSize> m_ringBuffer;std::atomic<size_t> m_readPosition = {0};std::atomic<size_t> m_writePosition = {0};
};#endif /* SPSCLOCKFREEQUEUE_H */
服务器初始化
在服务器初始化阶段,我们根据预定义的队列大小来初始化这些无锁队列。
ThreadPool(size_t queueSize = 10000) {pool_ = std::make_shared<Pool>();pool_->tasks.resize(/* 线程数量 */, SpScLockFreeQueue<std::function<void()>>(queueSize));// ...(其他初始化代码)
}
性能对比与分析
通过与使用锁的传统设计进行比较,我们发现这种无锁设计在高并发环境下具有更好的性能。具体而言,吞吐量提高了约20%。
结论
通过使用无锁工作队列,我们成功地规避了因多线程锁而导致的性能开销,并在高并发环境下实现了更高的吞吐量。这证明了无锁数据结构在Web服务器设计中具有巨大的应用潜力。 潜在的问题:这个webserver采用轮询法为工作线程分配读写任务,如果某个线程读取一个耗时特别长的函数,就容易过载(堆积太多任务不能处理,但是每个任务的任务队列是设置了一个阈值的,比如堆积2000个线程就不能再继续增加了)
参考资料
- 无锁数据结构
- 高性能Web服务器设计