题目大意
给你四个整数 n , m , s e e d , w n,m,seed,w n,m,seed,w,其中 n , m n,m n,m为两个多项式 A ( x ) = ∑ i = 0 n a i x i A(x)=\sum\limits_{i=0}^na_ix^i A(x)=i=0∑naixi和 B ( x ) = ∑ i = 0 m b i x i B(x)=\sum\limits_{i=0}^mb_ix^i B(x)=i=0∑mbixi的最高次数, s e e d , w seed,w seed,w是用来生成 a i a_i ai和 b i b_i bi的参数。
设 C ( x ) = A ( x ) B ( x ) = ∑ i = 0 n + m c i x i C(x)=A(x)B(x)=\sum\limits_{i=0}^{n+m}c_ix^i C(x)=A(x)B(x)=i=0∑n+mcixi。
有 q q q次询问,第 i i i次输入 l i , r i l_i,r_i li,ri,求 ∑ j = l i r i c j \sum\limits_{j=l_i}^{r_i}c_j j=li∑ricj对 1145141999 1145141999 1145141999( 1145141999 = 2 × 7 × 11 × 13 × 17 × 33647 + 1 1145141999=2\times 7\times 11\times 13\times 17\times 33647+1 1145141999=2×7×11×13×17×33647+1,是一个质数)取模后的值。
构造 a i a_i ai和 b i b_i bi的代码如下,可以对其进行修改来完成此题。
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long u64;
const int p=1145141999;
int a[10000005],b[10000005];
int n,m,q,w;
u64 seed;
u64 rnd()
{u64 x = seed;x ^= x << 13;x ^= x >> 7;x ^= x << 17;return seed = x;
}
int main(){scanf("%d%d%llu%d",&n,&m,&seed,&w);scanf("%d",&q);for(int i=0;i<=n;++i)a[i]=rnd()%w;for(int i=0;i<=m;++i)b[i]=rnd()%w;int l,r;for(int i=1;i<=q;++i){scanf("%d%d",&l,&r);}return 0;
}
1 ≤ n ≤ 6 × 1 0 6 , 1 ≤ q ≤ 25 , 1 ≤ w ≤ 1145141999 1\leq n\leq 6\times 10^6,1\leq q\leq 25,1\leq w\leq 1145141999 1≤n≤6×106,1≤q≤25,1≤w≤1145141999
题解
C ( x ) = A ( x ) B ( x ) = ∑ i = 0 n + m ( ∑ j = 0 i a j b i − j ) x i C(x)=A(x)B(x)=\sum\limits_{i=0}^{n+m}(\sum\limits_{j=0}^ia_jb_{i-j})x^i C(x)=A(x)B(x)=i=0∑n+m(j=0∑iajbi−j)xi
也就是说, c i = ∑ j = 0 i a j b i − j c_i=\sum\limits_{j=0}^ia_jb_{i-j} ci=j=0∑iajbi−j。
那么, ∑ i = 0 t c i = ∑ i = 0 t ∑ j = 0 i a j b i − j = ∑ j = 0 t a j ∑ i = 0 t − j b i \sum\limits_{i=0}^tc_i=\sum\limits_{i=0}^t\sum\limits_{j=0}^ia_jb_{i-j}=\sum\limits_{j=0}^ta_j\sum\limits_{i=0}^{t-j}b_i i=0∑tci=i=0∑tj=0∑iajbi−j=j=0∑taji=0∑t−jbi
令 b i b_i bi的前缀和为 s u m i {sum}_i sumi, S ( t ) = ∑ i = 0 t a i s u m t − i S(t)=\sum\limits_{i=0}^ta_i{sum}_{t-i} S(t)=i=0∑taisumt−i,则答案为 S ( r ) − S ( l − 1 ) S(r)-S(l-1) S(r)−S(l−1)。
求 S ( t ) S(t) S(t)的时间复杂度为 O ( n ) O(n) O(n),所以总时间复杂度为 O ( n q ) O(nq) O(nq)。
code
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long u64;
const long long p=1145141999;
int a[20000005],b[20000005],sum[20000005];
int n,m,q,w;
u64 seed;
u64 rnd()
{u64 x = seed;x ^= x << 13;x ^= x >> 7;x ^= x << 17;return seed = x;
}
long long gt(int t){long long re=0;for(int i=0;i<=t;i++){re=(re+1ll*a[i]*sum[t-i])%p;}return re;
}
int main(){scanf("%d%d%llu%d",&n,&m,&seed,&w);scanf("%d",&q);for(int i=0;i<=n;++i)a[i]=rnd()%w;for(int i=0;i<=m;++i)b[i]=rnd()%w;sum[0]=b[0];for(int i=1;i<=n+m;i++) sum[i]=(1ll*sum[i-1]+b[i])%p;int l,r;for(int i=1;i<=q;++i){scanf("%d%d",&l,&r);printf("%lld\n",(gt(r)-gt(l-1)+p)%p);}return 0;
}