Python柱形图

柱形图

柱形图,又称长条图、柱状统计图、条图、条状图、棒形图,是一种以长方形的长度为变量的统计图表。长条图用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用于较小的数据集分析。长条图亦可横向排列,或用多维方式表达。柱形图在数据可视化中具有多种作用和用途,包括:

  • 比较:柱形图是比较不同类别或组之间数量差异的常用工具。通过比较矩形条的高度或长度,可以直观地了解各个类别或组的数值大小,从而快速识别出最大值、最小值和趋势变化。

  • 分布:柱形图可以显示数据的分布情况。通过观察矩形条的高度分布,可以了解数据集中在哪些区间或类别上,以及是否存在异常值或离群点。

  • 排名:柱形图可以用于排名不同类别或组的顺序。根据矩形条的高度或长度,可以确定各个类别或组的排名顺序,从而帮助做出决策或优先级排序。

  • 趋势:柱形图可以显示时间或其他变量对数量的影响。通过在不同时间点或变量上绘制矩形条,可以观察到数量的变化趋势,从而帮助预测未来的走势或做出战略决策。

  • 强调:柱形图可以突出显示特定类别或组的重要性。通过增加特定类别或组的矩形条的颜色、阴影或标签,可以使其在图表中更加突出,吸引观察者的注意。

1.bar()

我们可以使用 pyplot 中的 bar() 方法来绘制柱形图。bar() 方法语法格式如下:

matplotlib.pyplot.bar(x, height, width=0.8, bottom=None, *, align='center', data=None, **kwargs)

2.参数说明

x:浮点型数组,柱形图的 x 轴数据。

height:浮点型数组,柱形图的高度。

width:浮点型数组,柱形图的宽度。

bottom:浮点型数组,底座的 y 坐标,默认 0。

align:柱形图与 x 坐标的对齐方式,‘center’ 以 x 位置为中心,这是默认值。 ‘edge’:将柱形图的左边缘与 x 位置对齐。要对齐右边缘的条形,可以传递负数的宽度值及 align=‘edge’。

**kwargs::其他参数。

简单柱形图

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as npx = np.array(["Runoob-1", "Runoob-2", "Runoob-3", "C-RUNOOB"])
y = np.array([12, 22, 6, 18])plt.bar(x, y,  color = ["#4CAF50","red","hotpink","#556B2F"])
plt.show()

简单柱形图(纵向)

在这里插入图片描述

纵向的柱形图可以使用 barh() 方法来设置:

import matplotlib.pyplot as plt
import numpy as npx = np.array(["Runoob-1", "Runoob-2", "Runoob-3", "C-RUNOOB"])
y = np.array([12, 22, 6, 18])plt.barh(x,y)
plt.show()

两组数据并列柱形图

并列柱形图在数据可视化中有以下几个主要作用:

  • 比较多个类别或组:并列柱形图可以用于比较多个类别或组之间的数值差异。通过将柱形图并列在同一水平位置上,观察者可以直观地比较它们之间的高度差异,从而了解每个类别或组的数值特征。

  • 显示关联关系:并列柱形图可以用于显示多个类别或组之间的关联关系。通过将柱形图并列在一起,观察者可以比较它们之间的相对大小和趋势,从而发现它们之间的关联或相互影响。

  • 强调单个类别或组的变化:并列柱形图可以突出显示单个类别或组的变化情况。通过将柱形图放置在同一水平位置上,观察者可以直接比较它们的高度差异,进而了解每个类别或组的变化程度。

  • 比较不同属性或指标:并列柱形图还可以用于比较不同属性或指标在多个类别或组之间的差异。通过并列柱形图,可以在同一图表中同时显示多个属性或指标的数值,从而方便比较它们之间的差异和关系。
    在这里插入图片描述

import numpy as np
from matplotlib import pyplot as pltplt.figure(figsize=(9, 9))
n = 5
X = np.arange(n) + 1.0
width = 0.3
# width:柱的宽度
# X是1,2,3,4,5,6,7,8,柱的个数
# numpy.random.uniform(low=0.0, high=1.0, size=None), normal
# uniform均匀分布的随机数,normal是正态分布的随机数,0.5-1均匀分布的数,一共有n个
Y1 = np.random.uniform(0.5, 1.0, n)
Y2 = np.random.uniform(0.5, 1.0, n)plt.bar(X - width/2, Y1, width=width, facecolor='lightskyblue', label='1')plt.bar(X + width/2, Y2, width=width, facecolor='yellowgreen', label='2')# 功能1
x_labels = ["G1", "G2", "G3", "G4", "G5"]
# 用第1组...替换横坐标x的值
plt.xticks(X, x_labels)
# 水平柱状图plt.barh,属性中宽度width变成了高度height
# 打两组数据时用+
# facecolor柱状图里填充的颜色
# edgecolor是边框的颜色
# 想把一组数据打到下边,在数据前使用负号
# plt.bar(X, -Y2, width=width, facecolor='#ff9999', edgecolor='white')
# 给图加text# 显示图例
plt.legend()
for x, y in zip(X, Y1):plt.text(x - width/2, y + 0.005, '%.2f' % y, ha='center', va='bottom')for x, y in zip(X, Y2):plt.text(x + width/2, y + 0.005, '%.2f' % y, ha='center', va='bottom')# plt.ylim(0, +1.25)
plt.show()

三组数据并列柱形图

在这里插入图片描述

import numpy as np
from matplotlib import pyplot as pltplt.figure(figsize=(9, 9))
n = 5
X = np.arange(n) + 1.0
width = 0.3
# width:柱的宽度
# X是1,2,3,4,5,6,7,8,柱的个数
# numpy.random.uniform(low=0.0, high=1.0, size=None), normal
# uniform均匀分布的随机数,normal是正态分布的随机数,0.5-1均匀分布的数,一共有n个
Y1 = np.random.uniform(0.5, 1.0, n)
Y2 = np.random.uniform(0.5, 1.0, n)
Y3 = np.random.uniform(0.5, 1.0, n)plt.bar(X - width, Y1, width=width, facecolor='lightskyblue', label='1')plt.bar(X, Y2, width=width, facecolor='yellowgreen', label='2')plt.bar(X + width, Y3, width=width, facecolor='red', label='3')# 功能1
x_labels = ["G1", "G2", "G3", "G4", "G5"]
# 用第1组...替换横坐标x的值
plt.xticks(X, x_labels)
# 水平柱状图plt.barh,属性中宽度width变成了高度height
# 打两组数据时用+
# facecolor柱状图里填充的颜色
# edgecolor是边框的颜色
# 想把一组数据打到下边,在数据前使用负号
# plt.bar(X, -Y2, width=width, facecolor='#ff9999', edgecolor='white')
# 给图加text# 显示图例
plt.legend()
for x, y in zip(X, Y1):plt.text(x - width, y + 0.005, '%.2f' % y, ha='center', va='bottom')for x, y in zip(X, Y2):plt.text(x, y + 0.005, '%.2f' % y, ha='center', va='bottom')for x, y in zip(X, Y3):plt.text(x + width, y + 0.005, '%.2f' % y, ha='center', va='bottom')
# plt.ylim(0, +1.25)
plt.show()

四组数据并列柱形图

在这里插入图片描述

import numpy as np
from matplotlib import pyplot as pltplt.figure(figsize=(12, 9))
n = 5
X = np.arange(n) + 1.0
width = 0.2
# width:柱的宽度
# X是1,2,3,4,5,6,7,8,柱的个数
# numpy.random.uniform(low=0.0, high=1.0, size=None), normal
# uniform均匀分布的随机数,normal是正态分布的随机数,0.5-1均匀分布的数,一共有n个
Y1 = np.random.uniform(0.5, 1.0, n)
Y2 = np.random.uniform(0.5, 1.0, n)
Y3 = np.random.uniform(0.5, 1.0, n)
Y4 = np.random.uniform(0.5, 1.0, n)plt.bar(X - 3*width/2, Y1, width=width, facecolor='lightskyblue', label='1')plt.bar(X - width/2, Y2, width=width, facecolor='b', label='2')plt.bar(X + width/2, Y3, width=width, facecolor='yellowgreen', label='3')plt.bar(X + 3*width/2, Y4, width=width, facecolor='r', label='4')# 功能1
x_labels = ["G1", "G2", "G3", "G4", "G5"]
# 用第1组...替换横坐标x的值
plt.xticks(X, x_labels)
# 水平柱状图plt.barh,属性中宽度width变成了高度height
# 打两组数据时用+
# facecolor柱状图里填充的颜色
# edgecolor是边框的颜色
# 想把一组数据打到下边,在数据前使用负号
# plt.bar(X, -Y2, width=width, facecolor='#ff9999', edgecolor='white')
# 给图加text# 显示图例
plt.legend()
for x, y in zip(X, Y1):plt.text(x - 3*width/2, y + 0.005, '%.2f' % y, ha='center', va='bottom')for x, y in zip(X, Y2):plt.text(x - width/2, y + 0.005, '%.2f' % y, ha='center', va='bottom')for x, y in zip(X, Y3):plt.text(x + width / 2, y + 0.005, '%.2f' % y, ha='center', va='bottom')for x, y in zip(X, Y4):plt.text(x + 3*width / 2, y + 0.005, '%.2f' % y, ha='center', va='bottom')# plt.ylim(0, +1.25)
plt.show()

堆叠柱形图

堆叠柱形图在数据可视化中有以下几个主要作用:

  • 比较组成部分:堆叠柱形图可以用于比较多个类别或组的不同部分在整体中的贡献程度。通过堆叠不同的柱形图,每个柱形图表示一个类别或组,可以直观地比较它们在整体中的相对大小。这对于展示数据的组成结构、分析各部分之间的比例和趋势非常有用。

  • 显示累积效果:堆叠柱形图可以显示多个类别或组的累积效果。每个堆叠柱形图的高度表示该类别或组的总值,而柱形图中的每个部分表示该部分的贡献。通过堆叠不同的柱形图,可以清晰地展示累积效果,例如各类别或组的总销售额随时间的变化情况。

  • 强调总体趋势:堆叠柱形图可以帮助观察者更容易地发现总体趋势。通过比较堆叠柱形图的整体高度,可以直观地判断不同类别或组之间的总体增长或减少趋势。这对于分析数据的总体变化、发现异常情况以及做出决策非常有帮助。

  • 可视化数据分布:堆叠柱形图还可以用于可视化数据的分布情况。通过堆叠不同的柱形图,可以看到每个部分在整体中的相对比例,从而了解数据的分布特征。这对于发现数据的偏差、异常或集中情况非常有用。

在这里插入图片描述

import numpy as np
from matplotlib import pyplot as pltplt.figure(figsize=(9, 12))
n = 5
X = np.arange(n) + 1.0
width = 0.3
# width:柱的宽度
# X是1,2,3,4,5,6,7,8,柱的个数
# numpy.random.uniform(low=0.0, high=1.0, size=None), normal
# uniform均匀分布的随机数,normal是正态分布的随机数,0.5-1均匀分布的数,一共有n个
Y1 = np.random.uniform(0.5, 1.0, n)
Y2 = np.random.uniform(0.5, 1.0, n)
Y3 = np.random.uniform(0.5, 1.0, n)Y11 = np.random.uniform(0.5, 1.0, n)
Y22 = np.random.uniform(0.5, 1.0, n)
Y33 = np.random.uniform(0.5, 1.0, n)plt.bar(X - width, Y1, width=width, facecolor='b', label='1-bottle')
plt.bar(X - width, Y11, width=width, bottom=Y1, facecolor='lightskyblue', label='1-top')plt.bar(X, Y2, width=width, facecolor='g', label='2-bottle')
plt.bar(X, Y22, width=width, bottom=Y2, facecolor='yellowgreen', label='2-top')plt.bar(X + width, Y3, width=width, facecolor='red', label='3-bottle')
plt.bar(X + width, Y33, bottom=Y3, width=width, facecolor='y', label='3-top')# 功能1
x_labels = ["G1", "G2", "G3", "G4", "G5"]
# 用第1组...替换横坐标x的值
plt.xticks(X, x_labels)
# 水平柱状图plt.barh,属性中宽度width变成了高度height
# 打两组数据时用+
# facecolor柱状图里填充的颜色
# edgecolor是边框的颜色
# 想把一组数据打到下边,在数据前使用负号
# plt.bar(X, -Y2, width=width, facecolor='#ff9999', edgecolor='white')
# 给图加text# 显示图例
plt.legend()
for x, y in zip(X, Y1+Y11):plt.text(x - width, y + 0.005, '%.2f' % y, ha='center', va='bottom')for x, y in zip(X, Y2+Y22):plt.text(x, y + 0.005, '%.2f' % y, ha='center', va='bottom')for x, y in zip(X, Y3+Y33):plt.text(x + width, y + 0.005, '%.2f' % y, ha='center', va='bottom')
# plt.ylim(0, +1.25)
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/95725.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用OpenCV(Python)获取图像的SIFT特征

import cv2 as cv import numpy as np import matplotlib.pyplot as plt imgcv.imread("../Lena.png") img_graycv.cvtColor(img,cv.COLOR_BGR2GRAY)#创建一个SIFI对象 siftcv.SIFT_create()#使用SIFT对象在灰度图像img_gray中检测关键点,结果存储在变量k…

迄今为止丨ChatGPT最强指令,一个可以让机器人生成机器人的Prompt,价值百万!

原文: 【ChatGPT调教】ChatGPT最强指令、让机器人为你生成机器人!-CSDN博客 说明:最好看原文 昨天,发现了一条可能是迄今为止,我见过最牛的,商业价值最高的ChatGPT指令。 通过这条指令,可以…

windows系统服务管理命令sc

sc可以用于管理系统服务、计划任务、系统日志等方面,是不可或缺的神器。 基本用法 在命令提示符下输入sc命令,然后按回车键。 上图展示的是sc命令的使用方法,支持哪些参数实现哪些功能 要查看系统所有服务列表,包括它们是否正在…

Ubuntu使用cmake和vscode开发自己的项目,引用自己的头文件和openCV

创建文件夹 mkdir my_proj 继续创建include 和 src文件夹,形成如下的目录结构 用vscode打开项目 创建add.h #ifndef ADD_H #define ADD_Hint add(int numA, int numB);#endif add.cpp #include "add.h"int add(int numA, int numB) {return numA nu…

程序人生 / 散文分享 / 生活感悟——【追光的日子】《爷爷的12本日历》,若你也共情,欢迎在评论区分享你的故事、观点、感悟和思考!

在一切变好之前,我们总要经历一些不开心的日子,这段日子也许很长,也许只是一觉醒来。有时候,选择快乐,更需要勇气。 🎯作者主页: 追光者♂🔥 🌸个人简介: 💖[1] 计算机专业硕士研究生💖 🌿[2] 2023年城市之星领跑者TOP1(哈尔滨)🌿 🌟[3]…

基于SpringBoot的视频网站系统

目录 前言 一、技术栈 二、系统功能介绍 用户信息管理 视频分享管理 视频排名管理 交流论坛管理 留言板管理 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 使用旧方法对视频信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运…

《视觉 SLAM 十四讲》V2 第 5 讲 相机与图像

文章目录 相机 内参 && 外参5.1.2 畸变模型单目相机的成像过程5.1.3 双目相机模型5.1.4 RGB-D 相机模型 实践5.3.1 OpenCV 基础操作 【Code】OpenCV版本查看 5.3.2 图像去畸变 【Code】5.4.1 双目视觉 视差图 点云 【Code】5.4.2 RGB-D 点云 拼合成 地图【Code】 习题题…

Python数据容器——集合的相关操作

作者:Insist-- 个人主页:insist--个人主页 本文专栏:Python专栏 专栏介绍:本专栏为免费专栏,并且会持续更新python基础知识,欢迎各位订阅关注。 目录 一、理解集合 1. 集合是什么? 2. 为什么…

Tensorflow、Pytorch和Ray(张量,计算图)

1.深度学习框架(Tensorflow、Pytorch) 1.1由来 可以追溯到2016年,当年最著名的事件是alphago战胜人类围棋巅峰柯洁,在那之后,学界普遍认为人工智能已经可以在一些领域超过人类,未来也必将可以在更多领域超过…

【Java】抽象类和接口的区别

1. 成员区别 抽象类 变量 常量;有构造方法,有抽象方法,也有非抽象方法接口 常量,抽象方法(JDK8 在接口中定义 非抽象方法) 2. 关系区别 类与类 继承单继承类与接口 实现,单实现和多实现接口…

JMETER自适应高分辨率的显示器

系列文章目录 历史文章 每天15分钟JMeter入门篇(一):Hello JMeter 每天15分钟JMeter入门篇(二):使用JMeter实现并发测试 每天15分钟JMeter入门篇(三):认识JMeter的逻辑控…

python 打包可执行文件-pyinstaller详解

python 打包可执行文件-pyinstaller详解 引言一、参数详解二、优化代码三、体积压缩 引言 pyinstaller是一个将python程序打包成独立可执行文件(exe,app等)的工具,它具有跨平台兼容性,可以在windows,mac和…

Flink--9、双流联结(窗口联结、间隔联结)

星光下的赶路人star的个人主页 我还有改变的可能性,一想起这点,我就心潮澎湃 文章目录 1、基于时间的合流——双流联结(Join)1.1 窗口联结(Window Join)1.2 间隔联结(Interval Join)…

项目设计:YOLOv5目标检测+机构光相机(intel d455和d435i)测距

1.介绍 1.1 Intel D455 Intel D455 是一款基于结构光(Structured Light)技术的深度相机。 与ToF相机不同,结构光相机使用另一种方法来获取物体的深度信息。它通过投射可视光谱中的红外结构光图案,然后从被拍摄物体表面反射回来…

【开发篇】十六、SpringBoot整合JavaMail实现发邮件

文章目录 0、相关协议1、SpringBoot整合JavaMail2、发送简单邮件3、发送复杂邮件 0、相关协议 SMTP(Simple Mail Transfer Protocol):简单邮件传输协议,用于发送电子邮件的传输协议POP3(Post Office Protocol - Versi…

Linux上将进程、线程与CPU核绑定

CPU亲和性(CPU Affinity)是某一进程(或线程)绑定到特定的CPU核(或CPU集合),从而使得该进程(或线程)只能运行在绑定的CPU核(或CPU集合)上。进程(或线程)本质上并不与CPU核绑定。每次进程(或线程)被调度执行时,它都可以由其关联列表中的任何CPU核执行。如果…

使用Scipy优化梯度下降问题

目 录 问题重述 附加问题 步骤实施 1.查看Scipy官网SciPy,找到优化有关的模块(Optimize) 2.研究多种优化策略,选择最符合代码的方案进行优化 3.minimize函数参数及其返回值 4.代码展示 5.结果展示 6.进一步优化 6.1对…

CDN网络基础入门:CDN原理及架构

背景 互联网业务的繁荣让各类门户网站、短视频、剧集观看、在线教育等内容生态快速发展,互联网流量呈现爆发式增长,自然也面临着海量内容分发效率上的挑战,那么作为终端用户,我们获取资源的体验是否有提升呢? 答案是…

一文了解硬盘AFR年化故障率评估方式和预测方案

目前常用评价硬盘(或者其他硬件产品)有一个关键的指标就是年化故障率(AFR)。年化故障率(AFR)是一种衡量产品可靠性的指标,表示在一年内产品发生故障的概率。 除了年化故障率(AFR&…

Netron可视化深度学习网络结构

有时候,我们构建网络模型想要直观的查看网络详细结构图,但是苦于没有办法。但是有了Netron以后,我们就可以将对应的onnx模型直接可视化,这样不仅可以观察网络的详细结构图,还可以查看网络每一层的具体参数,…