《视觉 SLAM 十四讲》V2 第 5 讲 相机与图像

文章目录

      • 相机 内参 && 外参
      • 5.1.2 畸变模型
      • 单目相机的成像过程
      • 5.1.3 双目相机模型
      • 5.1.4 RGB-D 相机模型
    • 实践
      • 5.3.1 OpenCV 基础操作 【Code】
        • OpenCV版本查看
      • 5.3.2 图像去畸变 【Code】
      • 5.4.1 双目视觉 视差图 点云 【Code】
      • 5.4.2 RGB-D 点云 拼合成 地图【Code】
    • 习题
      • 题1
      • √ 题2
      • 题3
      • √ 题4
      • 题5
      • 题6
      • 题7

在这里插入图片描述

空间点 投影到 相机成像平面

前面内容总结:
1、机器人如何表示自身位姿

视觉SLAM: 观测主要是指 相机成像 的过程

投影过程描述: 针孔 + 畸变

相机 内参 && 外参

在这里插入图片描述
在这里插入图片描述

像素坐标系 与 成像平面之间,相差了一个缩放 和一个原点的平移。

像素坐标系:
原点 o ′ o^{\prime} o 位于 图像 左上角
u u u 轴 向右 与 x x x 轴 平行
v v v 轴 向下 与 y y y 轴 平行

设像素坐标在 u u u 轴 上缩放了 α \alpha α 倍 , 在 v v v 轴 上缩放了 β \beta β 倍。同时原点 平移了 [ c x , c y ] T [c_x, c_y]^T [cx,cy]T
则 点 p ′ p^{\prime} p 的坐标 与像素坐标 [ u , v ] T [u, v]^T [u,v]T 之间的关系
{ u = α X ′ + c x = 由式 5.2 α ⋅ f X Z + c x = 令 f x = α f f x X Z + c x v = β Y ′ + c y = 由式 5.2 β ⋅ f Y Z + c x = 令 f y = β f f y Y Z + c y \begin{equation*} \begin{cases} u = \alpha X^{\prime} + c_x \overset{由式5.2}{=} \alpha ·f\frac{X}{Z} + c_x \overset{令f_x = \alpha f}{=} f_x\frac{X}{Z} + c_x \\ v = \beta Y^{\prime} + c_y \overset{由式5.2}{=} \beta·f\frac{Y}{Z} + c_x \overset{令f_y = \beta f}{=} f_y\frac{Y}{Z} + c_y \end{cases} \end{equation*} {u=αX+cx=由式5.2αfZX+cx=fx=αffxZX+cxv=βY+cy=由式5.2βfZY+cx=fy=βffyZY+cy

其中 f x = α f , f y = β f f_x = \alpha f, f_y=\beta f fx=αf,fy=βf
f f f 的单位 为
α , β \alpha, \beta α,β 的单位为 像素/米
f x , f y f_x, f_y fx,fy c x , c y c_x, c_y cx,cy 的单位为 像素

[ u v 1 ] = [ f x 0 c x 0 f y c y 0 0 1 ] [ X Z Y Z 1 ] = 1 Z [ f x 0 c x 0 f y c y 0 0 1 ] [ X Y Z ] = d e f 1 Z K P \begin{align*}\begin{bmatrix}u\\ v\\ 1\end{bmatrix} &=\begin{bmatrix}f_x & 0 & c_x\\ 0 & f_y & c_y\\ 0 & 0 &1\end{bmatrix}\begin{bmatrix}\frac{X}{Z}\\ \frac{Y}{Z}\\ 1\end{bmatrix}\\ &=\frac{1}{Z}\begin{bmatrix}f_x & 0 & c_x\\ 0 & f_y & c_y\\ 0 & 0 &1\end{bmatrix}\begin{bmatrix}X\\ Y\\ Z\end{bmatrix}\\ &\overset{\mathrm{def}}{=} \frac{1}{Z}\bm{KP} \end{align*} uv1 = fx000fy0cxcy1 ZXZY1 =Z1 fx000fy0cxcy1 XYZ =defZ1KP

相机的内参数(Camera Intrinsics) 矩阵 K \bm{K} K

K = [ f x 0 c x 0 f y c y 0 0 1 ] \bm{K} = \begin{bmatrix}f_x & 0 & c_x\\ 0 & f_y & c_y\\ 0 & 0 &1\end{bmatrix} K= fx000fy0cxcy1

标定:自己确定相机的内参【相机生产厂商未告知相机内参的情形】

  • 标定算法: 单目棋盘格张正友标定法

相机在运动 ——> P P P 的相机坐标 = 其世界坐标 P w \bm{P_\mathrm{w}} Pw 根据相机位姿转换到 相机坐标系下。

Z P u v = Z [ u v 1 ] = K ( R P w + t ) = K T P w Z\bm{P}_{uv}=Z\begin{bmatrix} u \\v \\1\end{bmatrix}=\bm{K(RP_{\mathrm{w}}+t)=KTP_\mathrm{w}} ZPuv=Z uv1 =K(RPw+t)=KTPw

相机的外参数(Camera Extrinsics):相机的位姿 R \bm{R} R t \bm{t} t

机器人 或 自动驾驶: 外参 = 相机坐标系 到机器人本体坐标系 之间的 变换。

  • 描述 相机安装在什么地方

5.1.2 畸变模型

径向畸变透镜形状引起的畸变(失真)。坐标点 距离原点的长度发生了变化。
在这里插入图片描述

桶形畸变:图像放大率 随着 与光轴之间的距离 增加 而减小
枕型畸变:图像放大率 随着 与光轴之间的距离 增加 而增加。

  • 穿过图像中心和光轴有交点的直线还能保持形状不变。

切向畸变:相机在在组装过程中能使 透镜和成像面 严格平行水平夹角发行了变化。

在这里插入图片描述

通过5个畸变系数( k 1 , k 2 , k 3 , p 1 , p 2 k_1,k_2,k_3,p_1,p_2 k1,k2,k3,p1,p2)找到某个点在像素平面的正确位置:
在这里插入图片描述

单目相机的成像过程

在这里插入图片描述

5.1.3 双目相机模型

在这里插入图片描述
z − f z = b − u L + u R b \frac{z-f}{z}=\frac{b-u_L+u_R}{b} zzf=bbuL+uR
令 d = u L − u R 令d = u_L-u_R d=uLuR 视差

z − f z = b − d b \frac{z-f}{z}=\frac{b-d}{b} zzf=bbd

1 − f z = 1 − d b 1-\frac{f}{z}=1-\frac{d}{b} 1zf=1bd

f z = d b \frac{f}{z}=\frac{d}{b} zf=bd

z = f b d z=\frac{fb}{d} z=dfb

由于计算量的原因,双目深度估计需要使用 GPU 或 FPGA 来实时计算。

5.1.4 RGB-D 相机模型

在这里插入图片描述
在这里插入图片描述
RGB-D 相机: 向探测目标 发射一束 光线(通常是红外光)。

RGB-D 不足:
1、用红外光进行深度测量,容易受到 日光或其他传感器发射的红外光干扰。不能在室外使用。
2、多个RGB-D相机之间也会相互干扰。
3、透射材质因为接收不到反射光,无法测量。

在这里插入图片描述
h h h 对应 行数
w w w 对应 列数

在这里插入图片描述
OpenCV: 通道顺序为 BGR

在这里插入图片描述

Eigen对于固定大小的矩阵使用起来效率更高。

实践

5.3.1 OpenCV 基础操作 【Code】

OpenCV版本查看
python3 -c "import cv2; print(cv2.__version__)"

可能报错

/home/xixi/Downloads/slambook2-master/ch5/basicuse/basicuse.cpp:6:9: fatal error: opencv2/core/core.cpp: No such file or directory6 | #include<opencv2/core/core.cpp>

OpenCV没安装好
gtk/gtk.h报错链接
到 OpenCV 安装包

mkdir build && cd build
cmake ..
make -j4  # 之前 -j8有误,改4试试
sudo make install

——————————————————

mkdir build && cd build 
cmake ..
make 
./basicuse ubuntu.png   ## ubuntu.png 要放在 build文件夹里; 或者提供该图片的绝对路径;或相对于build文件夹的相对路径

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)project(basicuse)# 添加C++ 11 标准支持  nullptr  chrono
set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )# 寻找 OpenCV 库
find_package(OpenCV 4.2.0 REQUIRED)
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})add_executable(basicuse basicuse.cpp)
# 链接OpenCV库
target_link_libraries(basicuse ${OpenCV_LIBS})

basicuse.cpp

#include<iostream>
#include<chrono> // 计时using namespace std;#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>// high-level graphical user interfaceusing namespace cv;int main(int argc, char **argv){// 读取argv[1] 指定的图像cv::Mat image;image = cv::imread(argv[1]);  // 从命令行的第一个参数中 读取图像位置// 判断图像是否 正确读取if (image.data == nullptr){cerr << "文件" << argv[1] << "不存在。" << endl;return 0; }// 输出文件的基本信息cout << "图像宽为" << image.cols << ",高为" << image.rows<< ", 通道数为" << image.channels()  << endl;cv::imshow("image", image);cv::waitKey(0);  // 暂停程序,等待一个按键输入cv::destroyAllWindows();return 0;
}

在这里插入图片描述
在这里插入图片描述

#include<iostream>
#include<chrono> // 计时using namespace std;#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>// high-level graphical user interfaceusing namespace cv;int main(int argc, char **argv){// 读取argv[1] 指定的图像cv::Mat image;image = cv::imread(argv[1]);  // 从命令行的第一个参数中 读取图像位置// 判断image的类型if (image.type() != CV_8UC1 && image.type() != CV_8UC3) {// 图像类型不符合要求cout << "请输入一张彩色图或灰度图." << endl;return 0;}// 遍历图像, 请注意以下遍历方式亦可使用于随机像素访问// 使用 std::chrono 来给算法计时chrono::steady_clock::time_point t1 = chrono::steady_clock::now();for (size_t y = 0; y < image.rows; y++) {// 用cv::Mat::ptr获得图像的行指针unsigned char *row_ptr = image.ptr<unsigned char>(y);  // row_ptr是第y行的头指针for (size_t x = 0; x < image.cols; x++) {// 访问位于 x,y 处的像素unsigned char *data_ptr = &row_ptr[x * image.channels()]; // data_ptr 指向待访问的像素数据// 输出该像素的每个通道,如果是灰度图就只有一个通道for (int c = 0; c != image.channels(); c++) {unsigned char data = data_ptr[c]; // data为I(x,y)第c个通道的值}}}chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used = chrono::duration_cast < chrono::duration < double >> (t2 - t1);cout << "遍历图像用时:" << time_used.count() << " 秒。" << endl;return 0;
}

在这里插入图片描述

#include<iostream>
#include<chrono> // 计时using namespace std;#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>// high-level graphical user interfaceusing namespace cv;int main(int argc, char **argv){// 读取argv[1] 指定的图像cv::Mat image;image = cv::imread(argv[1]);  // 从命令行的第一个参数中 读取图像位置// 关于 cv::Mat 的拷贝// 直接赋值并不会拷贝数据   浅拷贝 会 同时修改原始数据cv::Mat image_another = image;// 修改 image_another 会导致 image 发生变化image_another(cv::Rect(0, 0, 100, 100)).setTo(0); // 将左上角100*100的块置零cv::imshow("image", image);cv::waitKey(0);// 使用clone函数来拷贝数据cv::Mat image_clone = image.clone();image_clone(cv::Rect(0, 0, 100, 100)).setTo(255);cv::imshow("image", image);cv::imshow("image_clone", image_clone);cv::waitKey(0);// 对于图像还有很多基本的操作,如剪切,旋转,缩放等,限于篇幅就不一一介绍了,请参看OpenCV官方文档查询每个函数的调用方法.cv::destroyAllWindows();return 0;
}

5.3.2 图像去畸变 【Code】

cv::Undistort()

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)project(myOpenCV)# 添加C++ 11 标准支持  nullptr  chrono
set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )# 寻找 OpenCV 库
find_package(OpenCV 4.2.0 REQUIRED)
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})add_executable(myOpenCV undistortImage.cpp)
# 链接OpenCV库
target_link_libraries(myOpenCV ${OpenCV_LIBS})

undistortImage.cpp

#include <opencv2/opencv.hpp>
#include <string>using namespace std;string image_file = "../distorted.png";   // 请确保路径正确 int main(int argc, char **argv) {// 本程序实现去畸变部分的代码。尽管我们可以调用OpenCV的去畸变,但自己实现一遍有助于理解。// 畸变参数double k1 = -0.28340811, k2 = 0.07395907, p1 = 0.00019359, p2 = 1.76187114e-05;// 内参double fx = 458.654, fy = 457.296, cx = 367.215, cy = 248.375;cv::Mat image = cv::imread(image_file, 0);   // 图像是灰度图,CV_8UC1int rows = image.rows, cols = image.cols;cv::Mat image_undistort = cv::Mat(rows, cols, CV_8UC1);   // 去畸变以后的图// 计算去畸变后图像的内容for (int v = 0; v < rows; v++) {for (int u = 0; u < cols; u++) {// 按照公式,计算点(u,v)对应到畸变图像中的坐标(u_distorted, v_distorted)double x = (u - cx) / fx, y = (v - cy) / fy;double r = sqrt(x * x + y * y);double x_distorted = x * (1 + k1 * r * r + k2 * r * r * r * r) + 2 * p1 * x * y + p2 * (r * r + 2 * x * x);double y_distorted = y * (1 + k1 * r * r + k2 * r * r * r * r) + p1 * (r * r + 2 * y * y) + 2 * p2 * x * y;double u_distorted = fx * x_distorted + cx;double v_distorted = fy * y_distorted + cy;// 赋值 (最近邻插值)if (u_distorted >= 0 && v_distorted >= 0 && u_distorted < cols && v_distorted < rows) {image_undistort.at<uchar>(v, u) = image.at<uchar>((int) v_distorted, (int) u_distorted);} else {image_undistort.at<uchar>(v, u) = 0;}}}// 画图去畸变后图像cv::imshow("distorted", image);cv::imshow("undistorted", image_undistort);cv::waitKey();return 0;
}

在这里插入图片描述

5.4.1 双目视觉 视差图 点云 【Code】

在这里插入图片描述
在这里插入图片描述
CMakeLists.txt

cmake_minimum_required(VERSION 2.8)project(stereoVision)# 添加C++ 11 标准支持  nullptr  chrono
set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )# 寻找 OpenCV 库
find_package(OpenCV 4.2.0 REQUIRED)
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})find_package(Pangolin REQUIRED)add_executable(stereoVision stereoVision.cpp)
target_link_libraries(stereoVision ${OpenCV_LIBS} ${Pangolin_LIBRARIES})

stereoVision.cpp

#include <opencv2/opencv.hpp>
#include <vector>
#include <string>
#include <Eigen/Core>
#include <pangolin/pangolin.h>
#include <unistd.h>using namespace std;
using namespace Eigen;// 文件路径
string left_file = "../left.png";
string right_file = "../right.png";// 在pangolin中画图,已写好,无需调整
void showPointCloud(const vector<Vector4d, Eigen::aligned_allocator<Vector4d>> &pointcloud);int main(int argc, char **argv) {// 内参double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;// 基线double b = 0.573;// 读取图像cv::Mat left = cv::imread(left_file, 0);cv::Mat right = cv::imread(right_file, 0);cv::Ptr<cv::StereoSGBM> sgbm = cv::StereoSGBM::create(0, 96, 9, 8 * 9 * 9, 32 * 9 * 9, 1, 63, 10, 100, 32);    // 神奇的参数cv::Mat disparity_sgbm, disparity;sgbm->compute(left, right, disparity_sgbm);disparity_sgbm.convertTo(disparity, CV_32F, 1.0 / 16.0f);// 生成点云vector<Vector4d, Eigen::aligned_allocator<Vector4d>> pointcloud;// 如果你的机器慢,请把后面的v++和u++改成v+=2, u+=2for (int v = 0; v < left.rows; v++)for (int u = 0; u < left.cols; u++) {if (disparity.at<float>(v, u) <= 0.0 || disparity.at<float>(v, u) >= 96.0) continue;Vector4d point(0, 0, 0, left.at<uchar>(v, u) / 255.0); // 前三维为xyz,第四维为颜色// 根据双目模型计算 point 的位置double x = (u - cx) / fx;double y = (v - cy) / fy;double depth = fx * b / (disparity.at<float>(v, u));point[0] = x * depth;point[1] = y * depth;point[2] = depth;pointcloud.push_back(point);}cv::imshow("disparity", disparity / 96.0);cv::waitKey(0);// 画出点云showPointCloud(pointcloud);return 0;
}void showPointCloud(const vector<Vector4d, Eigen::aligned_allocator<Vector4d>> &pointcloud) {if (pointcloud.empty()) {cerr << "Point cloud is empty!" << endl;return;}pangolin::CreateWindowAndBind("Point Cloud Viewer", 1024, 768);glEnable(GL_DEPTH_TEST);glEnable(GL_BLEND);glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);pangolin::OpenGlRenderState s_cam(pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0));pangolin::View &d_cam = pangolin::CreateDisplay().SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f).SetHandler(new pangolin::Handler3D(s_cam));while (pangolin::ShouldQuit() == false) {glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);d_cam.Activate(s_cam);glClearColor(1.0f, 1.0f, 1.0f, 1.0f);glPointSize(2);glBegin(GL_POINTS);for (auto &p: pointcloud) {glColor3f(p[3], p[3], p[3]);glVertex3d(p[0], p[1], p[2]);}glEnd();pangolin::FinishFrame();usleep(5000);   // sleep 5 ms}return;
}

视差图:
在这里插入图片描述

byzanz-record -x 147 -y 76 -w 1386 -h 768  -d 15 --delay=5 -c  /home/xixi/myGIF/test.gif

在这里插入图片描述

在这里插入图片描述

5.4.2 RGB-D 点云 拼合成 地图【Code】

通过物理方法 获得 像素深度信息
在这里插入图片描述
在这里插入图片描述

mkdir build && cd build
cmake ..
make 
./joinMap

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)project(joinMap)# 添加C++ 11 标准支持  nullptr  chrono
set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )# 寻找 OpenCV 库
find_package(OpenCV 4.2.0 REQUIRED)
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})# Sophus 库
find_package(Sophus REQUIRED)
include_directories(${Sophus_INCLUDE_DIRS})#  Pangolin 库
find_package(Pangolin REQUIRED)
include_directories(${Pangolin_INCLUDE_DIRS})add_executable(joinMap joinMap.cpp)
target_link_libraries(joinMap ${OpenCV_LIBS} ${Pangolin_LIBRARIES} ${Sophus_LIBRARIES}) 
# 上面这句 一定要 链接到  Sophus

joinMap.cpp

#include <iostream>
#include <fstream>
#include <opencv2/opencv.hpp>
#include <boost/format.hpp>  // for formating strings
#include <pangolin/pangolin.h>
#include <sophus/se3.h>using namespace Sophus;  // 原代码少了 这句
using namespace std;
typedef vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> TrajectoryType;
typedef Eigen::Matrix<double, 6, 1> Vector6d;// 在pangolin中画图,已写好,无需调整
void showPointCloud(const vector<Vector6d, Eigen::aligned_allocator<Vector6d>> &pointcloud);int main(int argc, char **argv) {vector<cv::Mat> colorImgs, depthImgs;    // 彩色图和深度图TrajectoryType poses;         // 相机位姿ifstream fin("../pose.txt");if (!fin) {cerr << "请在有pose.txt的目录下运行此程序" << endl;return 1;}for (int i = 0; i < 5; i++) {boost::format fmt("../%s/%d.%s"); //图像文件格式  // !! 这里的路径也要改colorImgs.push_back(cv::imread((fmt % "color" % (i + 1) % "png").str()));depthImgs.push_back(cv::imread((fmt % "depth" % (i + 1) % "pgm").str(), -1)); // 使用-1读取原始图像double data[7] = {0};for (auto &d:data)fin >> d;Sophus::SE3 pose(Eigen::Quaterniond(data[6], data[3], data[4], data[5]),Eigen::Vector3d(data[0], data[1], data[2]));poses.push_back(pose);}// 计算点云并拼接// 相机内参 double cx = 325.5;double cy = 253.5;double fx = 518.0;double fy = 519.0;double depthScale = 1000.0;vector<Vector6d, Eigen::aligned_allocator<Vector6d>> pointcloud;pointcloud.reserve(1000000);for (int i = 0; i < 5; i++) {cout << "转换图像中: " << i + 1 << endl;cv::Mat color = colorImgs[i];cv::Mat depth = depthImgs[i];Sophus::SE3 T = poses[i];for (int v = 0; v < color.rows; v++)for (int u = 0; u < color.cols; u++) {unsigned int d = depth.ptr<unsigned short>(v)[u]; // 深度值if (d == 0) continue; // 为0表示没有测量到Eigen::Vector3d point;point[2] = double(d) / depthScale;point[0] = (u - cx) * point[2] / fx;point[1] = (v - cy) * point[2] / fy;Eigen::Vector3d pointWorld = T * point;Vector6d p;p.head<3>() = pointWorld;p[5] = color.data[v * color.step + u * color.channels()];   // bluep[4] = color.data[v * color.step + u * color.channels() + 1]; // greenp[3] = color.data[v * color.step + u * color.channels() + 2]; // redpointcloud.push_back(p);}}cout << "点云共有" << pointcloud.size() << "个点." << endl;showPointCloud(pointcloud);return 0;
}void showPointCloud(const vector<Vector6d, Eigen::aligned_allocator<Vector6d>> &pointcloud) {if (pointcloud.empty()) {cerr << "Point cloud is empty!" << endl;return;}pangolin::CreateWindowAndBind("Point Cloud Viewer", 1024, 768);glEnable(GL_DEPTH_TEST);glEnable(GL_BLEND);glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);pangolin::OpenGlRenderState s_cam(pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0));pangolin::View &d_cam = pangolin::CreateDisplay().SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f).SetHandler(new pangolin::Handler3D(s_cam));while (pangolin::ShouldQuit() == false) {glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);d_cam.Activate(s_cam);glClearColor(1.0f, 1.0f, 1.0f, 1.0f);glPointSize(2);glBegin(GL_POINTS);for (auto &p: pointcloud) {glColor3d(p[3] / 255.0, p[4] / 255.0, p[5] / 255.0);glVertex3d(p[0], p[1], p[2]);}glEnd();pangolin::FinishFrame();usleep(5000);   // sleep 5 ms}return;
}

在这里插入图片描述

在这里插入图片描述

byzanz-record -x 72 -y 64 -w 998 -h 605  -d 15 --delay=5 -c  /home/xixi/myGIF/test.gif

在这里插入图片描述

习题

待做:

  • 找OpenCV里的标定 方法
  • 整理链接里的内容

在这里插入图片描述

题1

相机内参标定

√ 题2

相机内参 K \bm{K} K 的物理意义:可将世界坐标系某点 P P P归一化坐标 转成 像素坐标 P u v = K [ X / Z , Y / Z , 1 ] T \bm{P_{uv}=K}[X/Z,Y/Z, 1]^T Puv=K[X/Z,Y/Z,1]T

图像分辨率指图像中存储的信息量,是每英寸图像内有多少个像素点,分辨率的单位为PPI(Pixels Per Inch),通常叫做像素每英寸
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
当分辨率变为原来的两倍时, 显然对于同一位置,以像素为单位的 c x c_x cx c y c_y cy 均变为原来的2倍。而以 像素/每米 为单位的 α \alpha α β \beta β 变成原来的 2 倍。 f f f 不变,则 f x = α f f_x = \alpha f fx=αf f y = β f f_y = \beta f fy=βf 也变为原来的 2 倍。
综上:当相机的分辨率变为原来的2倍时, c x c_x cx c y c_y cy f x f_x fx f y f_y fy 均变为原来的 2 倍。

题3

鱼眼或全景相机 标定
链接1
链接2
————————————

√ 题4

异同:
工业相机常见的曝光方式:
1、全局曝光(Global shutter,也称全局快门、帧曝光

  • 光圈打开时,工业相机中的图像传感器上所有像素点可以在同一时刻曝光,当光圈关闭后,所有像素同时结束曝光,然后输出像素数据。全局曝光的工业相机可以一次拍摄物体的整体图像后再输出,因此在拍摄高速运动物体时图像不会偏移,能够达到无失真的效果。
  • CCD(电荷耦合)元件 为这种曝光 方式

2、卷帘曝光(Rolling shutter,也称卷帘快门、行曝光

  • 采用的是逐行扫描逐行曝光的方式,当上一行的所有像素同时曝光后,下一行的所有像素再同时曝光,直至所有行曝光完成。
  • 当曝光不当或物体移动较快时,会出现部分曝光(partial exposure)、斜坡图形(skew)、晃动(wobble) 等现象。这种Rolling shutter方式拍摄出现的现象,称为“果冻效应”。
  • 大部分CMOS相机使用卷帘快门(rolling shutter)

3、基于卷帘曝光并结合全局曝光优势的全局复位释放曝光(Global Reset Release Shutter,GRR)

优缺点:
Global shutter适用于拍摄高速运动物体;且在光线有明暗变化的时候,Global shutter sensor不会有明暗瑕疵。
Global shutter需要对每个像素都要增加一个存储单元,这样增加了sensor的生产难度以及成本
Rolling Shutter sensor适用于拍摄运动速度相对较的物体或场景,可获得更高的成像信噪比。 Rolling Shutter 在低噪、像素损失、高感、动态范围等有优势。

————————

题5

RGB-D 相机标定
在这里插入图片描述

链接
链接2

题6

遍历图像的方法
链接
链接2

题7

OpenCV官方教程学习
官方文档

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/95715.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python数据容器——集合的相关操作

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 本文专栏&#xff1a;Python专栏 专栏介绍&#xff1a;本专栏为免费专栏&#xff0c;并且会持续更新python基础知识&#xff0c;欢迎各位订阅关注。 目录 一、理解集合 1. 集合是什么&#xff1f; 2. 为什么…

Tensorflow、Pytorch和Ray(张量,计算图)

1.深度学习框架&#xff08;Tensorflow、Pytorch&#xff09; 1.1由来 可以追溯到2016年&#xff0c;当年最著名的事件是alphago战胜人类围棋巅峰柯洁&#xff0c;在那之后&#xff0c;学界普遍认为人工智能已经可以在一些领域超过人类&#xff0c;未来也必将可以在更多领域超过…

【Java】抽象类和接口的区别

1. 成员区别 抽象类 变量 常量&#xff1b;有构造方法&#xff0c;有抽象方法&#xff0c;也有非抽象方法接口 常量&#xff0c;抽象方法&#xff08;JDK8 在接口中定义 非抽象方法&#xff09; 2. 关系区别 类与类 继承单继承类与接口 实现&#xff0c;单实现和多实现接口…

JMETER自适应高分辨率的显示器

系列文章目录 历史文章 每天15分钟JMeter入门篇&#xff08;一&#xff09;&#xff1a;Hello JMeter 每天15分钟JMeter入门篇&#xff08;二&#xff09;&#xff1a;使用JMeter实现并发测试 每天15分钟JMeter入门篇&#xff08;三&#xff09;&#xff1a;认识JMeter的逻辑控…

python 打包可执行文件-pyinstaller详解

python 打包可执行文件-pyinstaller详解 引言一、参数详解二、优化代码三、体积压缩 引言 pyinstaller是一个将python程序打包成独立可执行文件&#xff08;exe&#xff0c;app等&#xff09;的工具&#xff0c;它具有跨平台兼容性&#xff0c;可以在windows&#xff0c;mac和…

Flink--9、双流联结(窗口联结、间隔联结)

星光下的赶路人star的个人主页 我还有改变的可能性&#xff0c;一想起这点&#xff0c;我就心潮澎湃 文章目录 1、基于时间的合流——双流联结&#xff08;Join&#xff09;1.1 窗口联结&#xff08;Window Join&#xff09;1.2 间隔联结&#xff08;Interval Join&#xff09;…

项目设计:YOLOv5目标检测+机构光相机(intel d455和d435i)测距

1.介绍 1.1 Intel D455 Intel D455 是一款基于结构光&#xff08;Structured Light&#xff09;技术的深度相机。 与ToF相机不同&#xff0c;结构光相机使用另一种方法来获取物体的深度信息。它通过投射可视光谱中的红外结构光图案&#xff0c;然后从被拍摄物体表面反射回来…

【开发篇】十六、SpringBoot整合JavaMail实现发邮件

文章目录 0、相关协议1、SpringBoot整合JavaMail2、发送简单邮件3、发送复杂邮件 0、相关协议 SMTP&#xff08;Simple Mail Transfer Protocol&#xff09;&#xff1a;简单邮件传输协议&#xff0c;用于发送电子邮件的传输协议POP3&#xff08;Post Office Protocol - Versi…

Linux上将进程、线程与CPU核绑定

CPU亲和性(CPU Affinity)是某一进程(或线程)绑定到特定的CPU核(或CPU集合)&#xff0c;从而使得该进程(或线程)只能运行在绑定的CPU核(或CPU集合)上。进程(或线程)本质上并不与CPU核绑定。每次进程(或线程)被调度执行时&#xff0c;它都可以由其关联列表中的任何CPU核执行。如果…

使用Scipy优化梯度下降问题

目 录 问题重述 附加问题 步骤实施 1.查看Scipy官网SciPy&#xff0c;找到优化有关的模块&#xff08;Optimize&#xff09; 2.研究多种优化策略&#xff0c;选择最符合代码的方案进行优化 3.minimize函数参数及其返回值 4.代码展示 5.结果展示 6.进一步优化 6.1对…

CDN网络基础入门:CDN原理及架构

背景 互联网业务的繁荣让各类门户网站、短视频、剧集观看、在线教育等内容生态快速发展&#xff0c;互联网流量呈现爆发式增长&#xff0c;自然也面临着海量内容分发效率上的挑战&#xff0c;那么作为终端用户&#xff0c;我们获取资源的体验是否有提升呢&#xff1f; 答案是…

一文了解硬盘AFR年化故障率评估方式和预测方案

目前常用评价硬盘&#xff08;或者其他硬件产品&#xff09;有一个关键的指标就是年化故障率&#xff08;AFR&#xff09;。年化故障率&#xff08;AFR&#xff09;是一种衡量产品可靠性的指标&#xff0c;表示在一年内产品发生故障的概率。 除了年化故障率&#xff08;AFR&…

Netron可视化深度学习网络结构

有时候&#xff0c;我们构建网络模型想要直观的查看网络详细结构图&#xff0c;但是苦于没有办法。但是有了Netron以后&#xff0c;我们就可以将对应的onnx模型直接可视化&#xff0c;这样不仅可以观察网络的详细结构图&#xff0c;还可以查看网络每一层的具体参数&#xff0c;…

【数据结构】排序算法(二)—>冒泡排序、快速排序、归并排序、计数排序

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.冒泡排序 2.快速排序 2.1Hoare版 2.2占…

C++入门

一、C关键字 C总计63个关键字&#xff0c;C语言32个关键字。 二、命名空间 在C/C中&#xff0c;变量、函数和后面要学到的类都是大量存在的&#xff0c;这些变量、函数和类的名称将都存 在于全局作用域中&#xff0c;可能会导致很多冲突。使用命名空间的目的是对标识符的名称…

谁“动”了我的信息?

通信公司“内鬼” 批量提供手机卡 超6万张手机卡用来发涉赌短信 2023年10月2日&#xff0c;据报道2022年12月&#xff0c;湖北省公安厅“雷火”打击整治治安突出问题专项行动指挥部研判发现&#xff0c;有人在湖北随州利用虚拟拨号设备GOIP发出大量赌博短信。随州市公安局研判…

【最新】如何在CSDN个人主页左侧栏添加二维码?侧边推广怎么弄?

目录 引言 效果展示 步骤讲解 引言 当你决定在CSDN上展示自己的技术才能和项目时&#xff0c;&#x1f4a1; 将你的个人主页变得更炫酷和引人注目是必不可少的&#xff01;在这篇博客中&#xff0c;我们将向你揭开神秘的面纱&#xff0c;教你如何在CSDN个人主页的左侧栏上添…

RabbitMQ集群搭建详细介绍以及解决搭建过程中的各种问题——实操型

RabbitMQ集群搭建详细介绍以及解决搭建过程中的各种问题——实操型 1. 准备工作1.1 安装RabbitMQ1.2 简单部署搭建设计1.3 参考官网 2. RabbitMQ 形成集群的方法3. 搭建RabbitMQ集群3.1 部署架构3.2 rabbitmq集群基础知识3.2.1 关于节点名称&#xff08;标识符&#xff09;3.2.…

Java常见API---split()

package daysreplace;public class SplitTest {public static void main(String[] args) {String str"武汉市|孝感市|长沙市|北京市|上海市";String[] array str.split("\\|");System.out.println(array[0]);System.out.println(array[1]);System.out.pri…

【C++】一文带你走入vector

文章目录 一、vector的介绍二、vector的常用接口说明2.1 vector的使用2.2 vector iterator的使用2.3 vector空间增长问题2.4 vector 增删查改 三、总结 ヾ(๑╹◡╹)&#xff89;" 人总要为过去的懒惰而付出代价ヾ(๑╹◡╹)&#xff89;" 一、vector的介绍 vector…