EM聚类(上):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️
🐴作者:秋无之地

🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。

🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、留言💬、关注🤝,关注必回关

上一篇文章已经跟大家介绍过《K-Means(下):数据分析 | 数据挖掘 | 十大算法之一》,相信大家对K-Means(下)都有一个基本的认识。下面我讲一下,EM聚类(上):数据分析 | 数据挖掘 | 十大算法之一

一、例子:如何将一份菜等分给两个人?

EM 的英文是 Expectation Maximization,所以 EM 算法也叫最大期望算法。

我们先看一个简单的场景:假设你炒了一份菜,想要把它平均分到两个碟子里,该怎么分?

很少有人用称对菜进行称重,再计算一半的分量进行平分。大部分人的方法是先分一部分到碟子 A 中,然后再把剩余的分到碟子 B 中,再来观察碟子 A 和 B 里的菜是否一样多,哪个多就匀一些到少的那个碟子里,然后再观察碟子 A 和 B 里的是否一样多……整个过程一直重复下去,直到份量不发生变化为止。

你能从这个例子中看到三个主要的步骤:初始化参数、观察预期、重新估计。首先是先给每个碟子初始化一些菜量,然后再观察预期,这两个步骤实际上就是期望步骤(Expectation)。如果结果存在偏差就需要重新估计参数,这个就是最大化步骤(Maximization)。这两个步骤加起来也就是 EM 算法的过程。

二、EM 算法的工作原理

说到 EM 算法,我们先来看一个概念“最大似然”,英文是 Maximum Likelihood,Likelihood 代表可能性,所以最大似然也就是最大可能性的意思。

什么是最大似然呢?举个例子,有一男一女两个同学,现在要对他俩进行身高的比较,谁会更高呢?根据我们的经验,相同年龄下男性的平均身高比女性的高一些,所以男同学高的可能性会很大。这里运用的就是最大似然的概念。

最大似然估计是什么呢?它指的就是一件事情已经发生了,然后反推更有可能是什么因素造成的。还是用一男一女比较身高为例,假设有一个人比另一个人高,反推他可能是男性。最大似然估计是一种通过已知结果,估计参数的方法。

那么 EM 算法是什么?它和最大似然估计又有什么关系呢?EM 算法是一种求解最大似然估计的方法,通过观测样本,来找出样本的模型参数。

再回过来看下开头我给你举的分菜的这个例子,实际上最终我们想要的是碟子 A 和碟子 B 中菜的份量,你可以把它们理解为想要求得的模型参数。然后我们通过 EM 算法中的 E 步来进行观察,然后通过 M 步来进行调整 A 和 B 的参数,最后让碟子 A 和碟子 B 的参数不再发生变化为止。

实际我们遇到的问题,比分菜复杂。我再给你举个一个投掷硬币的例子,假设我们有 A 和 B 两枚硬币,我们做了 5 组实验,每组实验投掷 10 次,然后统计出现正面的次数,实验结果如下:

投掷硬币这个过程中存在隐含的数据,即我们事先并不知道每次投掷的硬币是 A 还是 B。假设我们知道这个隐含的数据,并将它完善,可以得到下面的结果:

我们现在想要求得硬币 A 和 B 出现正面次数的概率,可以直接求得:

而实际情况是我不知道每次投掷的硬币是 A 还是 B,那么如何求得硬币 A 和硬币 B 出现正面的概率呢?

这里就需要采用 EM 算法的思想。

  1. 初始化参数。我们假设硬币 A 和 B 的正面概率(随机指定)是θA=0.5 和θB=0.9。
  2. 计算期望值。假设实验 1 投掷的是硬币 A,那么正面次数为 5 的概率为:
  3. 通过猜测的结果{A, A, B, B, A}来完善初始化的参数θA 和θB。

公式中的 C(10,5) 代表的是 10 个里面取 5 个的组合方式,也就是排列组合公式,0.5 的 5 次方乘以 0.5 的 5 次方代表的是其中一次为 5 次为正面,5 次为反面的概率,然后再乘以 C(10,5) 等于正面次数为 5 的概率。

假设实验 1 是投掷的硬币 B ,那么正面次数为 5 的概率为:

所以实验 1 更有可能投掷的是硬币 A。

然后我们对实验 2~5 重复上面的计算过程,可以推理出来硬币顺序应该是{A,A,B,B,A}。

这个过程实际上是通过假设的参数来估计未知参数,即“每次投掷是哪枚硬币”。

然后一直重复第二步和第三步,直到参数不再发生变化。

简单总结下上面的步骤,你能看出 EM 算法中的 E 步骤就是通过旧的参数来计算隐藏变量。然后在 M 步骤中,通过得到的隐藏变量的结果来重新估计参数。直到参数不再发生变化,得到我们想要的结果。

三、EM 聚类的工作原理

上面你能看到 EM 算法最直接的应用就是求参数估计。如果我们把潜在类别当做隐藏变量,样本看做观察值,就可以把聚类问题转化为参数估计问题。这也就是 EM 聚类的原理。

相比于 K-Means 算法,EM 聚类更加灵活,比如下面这两种情况,K-Means 会得到下面的聚类结果。

因为 K-Means 是通过距离来区分样本之间的差别的,且每个样本在计算的时候只能属于一个分类,称之为是硬聚类算法。而 EM 聚类在求解的过程中,实际上每个样本都有一定的概率和每个聚类相关,叫做软聚类算法。

你可以把 EM 算法理解成为是一个框架,在这个框架中可以采用不同的模型来用 EM 进行求解。常用的 EM 聚类有 GMM 高斯混合模型和 HMM 隐马尔科夫模型。GMM(高斯混合模型)聚类就是 EM 聚类的一种。比如上面这两个图,可以采用 GMM 来进行聚类。

和 K-Means 一样,我们事先知道聚类的个数,但是不知道每个样本分别属于哪一类。通常,我们可以假设样本是符合高斯分布的(也就是正态分布)。每个高斯分布都属于这个模型的组成部分(component),要分成 K 类就相当于是 K 个组成部分。这样我们可以先初始化每个组成部分的高斯分布的参数,然后再看来每个样本是属于哪个组成部分。这也就是 E 步骤。

再通过得到的这些隐含变量结果,反过来求每个组成部分高斯分布的参数,即 M 步骤。反复 EM 步骤,直到每个组成部分的高斯分布参数不变为止。

这样也就相当于将样本按照 GMM 模型进行了 EM 聚类。

四、总结

EM 算法相当于一个框架,你可以采用不同的模型来进行聚类,比如 GMM(高斯混合模型),或者 HMM(隐马尔科夫模型)来进行聚类。GMM 是通过概率密度来进行聚类,聚成的类符合高斯分布(正态分布)。而 HMM 用到了马尔可夫过程,在这个过程中,我们通过状态转移矩阵来计算状态转移的概率。HMM 在自然语言处理和语音识别领域中有广泛的应用。

在 EM 这个框架中,E 步骤相当于是通过初始化的参数来估计隐含变量。M 步骤就是通过隐含变量反推来优化参数。最后通过 EM 步骤的迭代得到模型参数。

版权声明

本文章版权归作者所有,未经作者允许禁止任何转载、采集,作者保留一切追究的权利。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/95458.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【uniapp+vue3+ts】请求函数封装,请求和上传文件拦截器

1、uniapp 拦截器 uni.addInterceptor(STRING,OBJECT) 拦截器中包括基础地址、超时时间、添加请求头标识、添加token utils文件夹下新建http.ts 拦截uploadFile文件上传,rquest请求接口 cosnt baseUrl xxxx// 添加拦截器 const httpInterceptor {//拦截前触发i…

来聊一聊独热码检测

国庆假期不小心扭伤了脚踝,在家没事看到一篇文章挺有意思,于是写出来分享给大家。 这是一道数字电路面试题,也是很多面试官很喜欢考察面试者的一道题目,题干很简单:给定一个4bit的信号A,设计逻辑来判断A是…

使用图形视图框架(Graphics View Framework)在QML中创建交互式图形界面

使用图形视图框架(Graphics View Framework)在QML中创建交互式图形界面 使用图形视图框架(Graphics View Framework)在QML中创建交互式图形界面 使用图形视图框架(Graphics View Framework)在QML中创建交互式图形界面什么是图形视图框架(Graphics View Framework)?…

数学建模Matlab之基础操作

作者由于后续课程也要学习Matlab,并且之前也进行了一些数学建模的练习(虽然是论文手),所以花了几天零碎时间学习Matlab的基础操作,特此整理。 基本运算 a55 %加法,同理减法 b2^3 %立方 c5*2 %乘法 x 1; …

Qt 综合练习小项目--反金币(2/2)

目录 4 选择关卡场景 4.2 背景设置 4.3 创建返回按钮 4.3 返回按钮 4.4 创建选择关卡按钮 4.5 创建翻金币场景 5 翻金币场景 5.1 场景基本设置 5.2 背景设置 5.3 返回按钮 5.4 显示当前关卡 5.5 创建金币背景图片 5.6 创建金币类 5.6.1 创建金币类 MyCoin 5.6.…

WPF绑定单变量Binding和绑定多变量MultiBinding 字符串格式化 UI绑定数据,数据变化自动更新UI,UI变化自动更新数据

UI绑定数据,数据变化自动更新UI,UI变化自动更新数据。 支持多设备,同时下载。 绑定单变量 在WPF (Windows Presentation Foundation) 中,您可以使用数据绑定来将变量绑定到界面元素。这允许您在界面上显示变量的值,…

SpringCloud-Bus

接上文 SpringCloud-消息组件 1 注册Bus Bus需要基于一个具体的消息队列实现&#xff0c;比如RabbitMQ.还使用最开始的服务拆分项目&#xff0c;比如现在借阅服务的某个接口调用时&#xff0c;能给用户服务和图书服务发送一个通知。 首先父项目导入SpringCloud依赖 <depend…

【网络安全-信息收集】网络安全之信息收集和信息收集工具讲解

一&#xff0c;域名信息收集 1-1 域名信息查询 可以用一些在线网站进行收集&#xff0c;比如站长之家 域名Whois查询 - 站长之家站长之家-站长工具提供whois查询工具&#xff0c;汉化版的域名whois查询工具。https://whois.chinaz.com/ 可以查看一下有没有有用的信息&#xf…

全志ARM926 Melis2.0系统的开发指引⑥

全志ARM926 Melis2.0系统的开发指引⑥ 编写目的9. 系统启动流程9.1. Shell 部分9.2.Orange 和 desktop 部分9.3. app_root 加载部分9.4. home 加载部分 10. 显示相关知识概述10.1. 总体结构10.2. 显示过程10.3. 显示宽高参数关系 -. 全志相关工具和资源-.1 全志固件镜像修改工具…

2023/10/4 QT实现TCP服务器客户端搭建

服务器端&#xff1a; 头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> #include <QTcpSocket> #include <QList> #include <QMessageBox> #include <QDebug>QT_BEGIN_NAMESPACE namespace Ui { cla…

C++设计模式-生成器(Builder)

目录 C设计模式-生成器&#xff08;Builder&#xff09; 一、意图 二、适用性 三、结构 四、参与者 五、代码 C设计模式-生成器&#xff08;Builder&#xff09; 一、意图 将一个复杂对象的构建与它的表示分离&#xff0c;使得同样的构建过程可以创建不同的表示。 二、…

《计算机视觉中的多视图几何》笔记(13)

13 Scene planes and homographies 本章主要讲述两个摄像机和一个世界平面之间的射影几何关系。 我们假设空间有一平面 π \pi π&#xff0c;平面上的一点为 x π x_{\pi} xπ​。 x π x_{\pi} xπ​分别在两幅图像 P , P ′ P, P P,P′上形成了 x , x ′ x, x x,x′。 那…

JavaEE 网络原理——TCP的工作机制(中篇 三次握手和四次挥手)

文章目录 一、TCP 内部工作机制——连接管理1. 连接(三次握手)(1).有连接和确认应答之间的关系(2). 通过客户端和服务器详细描述三次握手 2. 断开连接(四次挥手)(1)讨论“四次握手”中间步骤的合并问题。(2) 根据简单的 TCP 代码解释断开连接(3) 四次挥手中的两个重要的 TCP 状…

@ConfigurationProperties配置绑定~

ConfigurationProperties注解是Spring Boot中的一个注解&#xff0c;用于将配置文件中的属性值绑定到Java类中的字段上。 ConfigurationProperties注解的作用包括&#xff1a; 实现配置文件属性和Java类字段的映射&#xff0c;简化了读取配置文件的操作。 可以指定配置文件中…

React项目部署 - Nginx配置

写在前面&#xff1a;博主是一只经过实战开发历练后投身培训事业的“小山猪”&#xff0c;昵称取自动画片《狮子王》中的“彭彭”&#xff0c;总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域&#xff0c;如今终有小成…

GB28181学习(六)——实时视音频点播(数据传输部分)

GB28181系列文章&#xff1a; 总述&#xff1a;https://blog.csdn.net/www_dong/article/details/132515446 注册与注销&#xff1a;https://blog.csdn.net/www_dong/article/details/132654525 心跳保活&#xff1a;https://blog.csdn.net/www_dong/article/details/132796…

GPT系列论文解读:GPT-2

GPT系列 GPT&#xff08;Generative Pre-trained Transformer&#xff09;是一系列基于Transformer架构的预训练语言模型&#xff0c;由OpenAI开发。以下是GPT系列的主要模型&#xff1a; GPT&#xff1a;GPT-1是于2018年发布的第一个版本&#xff0c;它使用了12个Transformer…

企业微信机器人对接GPT

现在网上大部分微信机器人项目都是基于个人微信实现的&#xff0c;常见的类库都是模拟网页版微信接口。 个人微信作为我们自己日常使用的工具&#xff0c;也用于支付场景&#xff0c;很怕因为违规而被封。这时&#xff0c;可以使用我们的企业微信机器人&#xff0c;利用企业微信…

【数据结构】排序(1) ——插入排序 希尔排序

目录 一. 直接插入排序 基本思想 代码实现 时间和空间复杂度 稳定性 二. 希尔排序 基本思想 代码实现 时间和空间复杂度 稳定性 一. 直接插入排序 基本思想 把待排序的记录按其关键码值的大小依次插入到一个已经排好序的有序序列中&#xff0c;直到所有的记录插入完为止&…

程序三高的方法

程序三高的方法 目录概述需求&#xff1a; 设计思路实现思路分析1.1&#xff09;高并发 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a better result,wait for change,c…