背包问题学习笔记-多重背包问题

题意描述:

有 N 种物品和一个容量是 V 的背包。第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。输入格式
第一行两个整数,N,V (0<N≤1000, 0<V≤20000),用空格隔开,分别表示物品种数和背包容积。接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。输出格式
输出一个整数,表示最大价值。

多重背包的问题根据数据范围的大小划分为了三个难度层次,分别对应三种解法。对应的数据范围分别是:

暴力求解
0<N,V100
0<vi,wi,si≤100
二进制优化
0<N1000
0<V2000
0<vi,wi,si≤2000
单调队列优化
0<N1000
0<V20000
0<vi,wi,si≤20000

示例:

4 5
1 2 3
2 4 1
3 4 3
4 5 2

10


解题思路:
Alice: 这是一道题拆成了三道题 ?这题这么难
Bob: 丰俭由人,😁
Alice: 多重背包和 01 背包的区别就是每类物品有了数量的限制,01 背包是只能选或者不选,完全背包是由无数种可以选,01 背包是有 k 种可以选。
Bob: 是的,那直接改一下状态转移公式得了,直接按照完全背包的方式换一下最内层的状态转移好了,dp[j] = max(dp[j], dp[j-vi * k] + wi * k) k 取值 0,1,2,3 …
Alice: 为啥要按照完全背包,从最大体积开始求解 ?
Bob: 看状态转移方程,我们还用一维度的 dp 数组的话,对于第 i 个物品,还需要用到第 i-1 个物品的 j-vi * k 的状态,从最大体积往小了计算才是对的。
Alice: 这个理解起来还不太难。
Bob: 是的,这里可以关注一下计算量,暴力去算实际上是 O^3 的,数据范围都是 100,最大也就是 10^6,这样不会超时的。
Alice: 二进制优化讲的是啥 ?
Bob: 二进制优化的前提是,把多重背包转换成 01 背包问题,但是转换的方式有很多种,二进制优化是其中一种的优化方法。举个例子,第 0 种物品有 7 个,我们该如何拆分呢,拆成 7 个1 ?每个体积和价值都是 v0,w0。这样的计算量大概,O^2 也就是双重循环,1000 * 2000 * 2000 大概 2* 10^9, 1s 的时间限制大概能完成10^6~10^7,这样会超时的。
Alice: 是的,直接拆,拆出来的物品数量太多了
Bob: 这样其实就转换成了拆分的问题,把 7 拆成若干个数字,且这些数字能组成 0-7 的所有数字。
Alice: 哦哦,就是二进制啊,二进制是能够表达所有整数的,0到7也就是,2^1 , 2^1, 2^2 这些。然后其实就是二进制的表示一样,7 就是 111,对应到三个物品,就是全选 ?
Bob: 对,但是还有一个问题,如果你的数字是 8 呢,拆成 1,2, 4,8 ?那样的话,就有可能选出 1+2 + 4 + 8 == 15 的选择,但是原来最多也就是 8个。
Alice: 可以这样子,8 的数字就用 7 的那套,剩下的差值额外补齐,0-7 的范围再加个 1,所能表达的范围就是 0-8。
Bob: 应该就是这样,然后具体拆分的时候还可以直接从 1,2,4 累乘,然后不断地减下来,最后剩下的额外加一套。这样应该比较方便而且很快。
Alice:nice,拆外之后直接用 01 背包就行了。这样算的计算量应该是 log 2000 * 1000 * 2000 == 2.2 * 10^7 ,应该没问题啦。
Bob:单调队列优化呢 ?
Alice: 这个看起来很麻烦的样子,是啊,这个需要先知道单调队列是啥。可以先看一下 这篇文章
Bob:单调队列优化的思路大概是这样的,还得从完全背包的递推公式讲起,考虑第 i 种物品 dp[j] = max(dp[j], dp[j-vi * k] + wi * k) k 取值 0,1,2,3 …。这里实际的计算过程是什么样的呢,j-vi*k 减到最后,无论 j 的取值是啥,一定剩下的是 vi 的各种余数,1,2,3 … vi-1,然后从 1+v,1+2v,1+3v … 的状态转移计算过程会相互影响,而 2+v,2+2v,2+3v 会相互影响,两个余数之间的计算过程互相不影响,这样我们就能把对 i 物品的计算划分为互相独立的 vi-1 个,然后单独计算。
Alice: 然后的,拆分成 多个计算过程就能变快 ?并行处理吗 ?
Bob: 然后就是难以理解的地方了,我先举个例子吧,假设背包体积是 100, 第 i 种物品的体积是 5,价值是 4,数量是 3,考虑第 i 个物品时候的状态的计算,dp[j] = max(dp[j- 5*0] + 4*0, dp[j- 5*1] + 4*1, dp[j-5*2] + 4*2), dp[j - 5*3] + 4*3,具体的计算过程,从底向上就是 求 dp[0 + 5*0], dp[0 + 5*1] + 4*1, dp[0 + 5*2] + 4*2, dp[0 + 5*3] + 4*3 之间的最大值,然后再根据放 1 个,2个,3个求出 dp[0+20]dp[1+20] 看的是 dp[1 + 5*0] + 4*0, dp[1 + 5*1] + 4*1, dp[1 + 5*2] + 4*2, dp[1 + 5*3] + 4*3 的最大值。明白了吗 ? 0,1,2 在这里就是不同的计算序列,每个计算序列都要根据 4 的滑动窗口求前面的最大值,然后再计算当前的最大值。
Alice: 滑动窗口就在这呢,原来是对第 i 种物品的体积余数的每个计算序列里面滑动,滑动窗口的大小就是物品的最大数量。
Bob: 其实滑动窗口的大小不一定是物品的最大数量,k 的实际取值范围是 math.min (si + 1, maxVolum / vi),不过这个可以在代码层直接实现掉,可以暂时认为是最大数量,不影响理解。
Alice: 然后单调队列里面维护的时候什么呢 ?队首和队尾都是怎么维护的呢 ?
Bob: 单调队列里面维护的是当前窗口里面最大价值所对应的体积,这样我们应该能够比较轻松的写出 dp[j] 的更新,dp[j] = lastRowDp[queue[0]] + (j - queue[0]) / vi * wi,想一下,queue[0] 里面是当前窗口的最大价值对应的体积,我们在这个体积之上更新 dp[j]。队首的维护其实还是窗口的大小,只不过这里窗口的大小是通过体积的计算来校验的。
Alice: 这些都还好理解,那队尾的维护呢 ?我记得滑动窗口最大值里面是直接计算窗口里面的数字之和,这里应该不是吧。
Bob: 确实不是,这里还有点不太好理解。这里还是按照最大价值来计算的,只是比较的是第 i-1 个物品对应的体积和 第 i 个物品对应的体积所能给 dp[j] 带来的价值收益。要知道我们在 queue[0] 队首的位置维护的是在窗口中能给 dp[j] 带来最大价值的体积,而单调队列的维护正式通过队首和队尾维护的,所以队尾的维护逻辑实际和 dp[j] 的更新逻辑是一致的。
Alice: 更新逻辑是一致的 ?!我好像有点明白了。还有一些细节问题,滑动窗口的大小不定是怎么实现的 ?
Bob: 这个好说,你从余数 r 开始,r 就是 r + 0 * vi 然后每次给 r += vi,让 r 不要超过最大体积就可以了。
Alice: 这题真难。
Bob:这题真难,我看别人的题解看了半天才明白滑动窗口在哪滑呢,看别人代码看了半天,单调队列维护的代码都快背下来了,也没看明白怎么维护的,还是得实际举个例子。
Alice: 还有一个小问题,这里为啥不能把状态压缩成一个一位数组,为啥还要一个 lastRowDp 呢 ?
Bob:简单,第 i 个物品的 dp[j] 的更新需要依赖于体积 j 的前 si 个状态,如果直接用 dp[j - vi],那用的就是更新过的值了,就不是 i-1 个物品的状态了。


代码:

暴力

const solve = (count, maxVolum, volumAndWeight) => {const dp = new Array(maxVolum + 1).fill(0);for(let i=0; i<count; ++i){// 第 i 个物品的体积和价值const [ivolum, iweight, itotal] = volumAndWeight[i];for(let j=maxVolum; j>=ivolum; --j) {const candiantes = [];for(let k=0; k<=itotal; ++k) {j - ivolum * k >= 0 && candiantes.push(dp[j - ivolum * k] + k * iweight);}dp[j] = Math.max(...candiantes);}}console.log(dp[maxVolum]);
}

二进制优化

const solve = (count, maxVolum, volumAndWeightAndCount) => {// 二进制拆分为 01 背包const volumnAndWeight = [];volumAndWeightAndCount.forEach(item => {let [v, w, s] = item;for (let k=1; k <= s; k*=2) {s -= k;volumnAndWeight.push([k*v, k*w]);}if(s > 0) {volumnAndWeight.push([s*v, s*w]);}});// 01 背包解法const dp = new Array(maxVolum + 1).fill(0);for(let i=0; i<volumnAndWeight.length; ++i){// 第 i 个物品的体积和价值const [ivolum, iweight] = volumnAndWeight[i];for(let j=maxVolum; j>=ivolum; --j) {dp[j] = Math.max(dp[j], dp[j - ivolum] + iweight);}}console.log(dp[maxVolum]);
}

单调队列优化

const fs = require('fs');
let buffer = '';process.stdin.on('readable', () => {const chunk = process.stdin.read();if (chunk) {buffer += chunk.toString()}
});// 输入的字符串转换为数字
const convert = (inputString) => {const list = [];inputString.split('\n').forEach((line) => {const tokens = line.split(' ');list.push(tokens.map(num => parseInt(num, 10)));});return list;
}// 批量调用
const batchCall = (list, solve) => {// 划分数据const data = [];let countAndVolumIndex = 0;while(countAndVolumIndex < list.length) {const [count, volum] = list[countAndVolumIndex];data.push({volum: volum,count: count,volumAndWeightAndCount: list.slice(countAndVolumIndex + 1, countAndVolumIndex + 1 + count)});countAndVolumIndex += count + 1;}data.forEach(item => {if(solve && item && item.count && item.volum) {solve(item.count, item.volum, item.volumAndWeightAndCount);}});
}const solve = (count, maxVolum, volumAndWeightAndCount) => {// 单调队列优化方法const dp = new Array(maxVolum + 10).fill(0);// 对于每种物品 for (let i=0; i<count; ++i) {// 状态压缩const lastRowDp = [...dp];// 取出第 i 种物品的体积,价值,数量const [vi, wi, si] = volumAndWeightAndCount[i];// 对于每种可能剩余的体积,0,1,2, ... vi-1 for (let r=0; r<vi; ++r) {// 单调队列求解每种可能的最大值,滑动窗口大小是,math.min (si, maxVolum / vi) 下取整// 0 + 0v, 0 + 1v, 0 + 2v ... 0 + kv 的数组中滑动,每次一步// 最大价值对应的体积的单调队列,双端队列const queue = [];for(let j=r; j<=maxVolum; j+=vi) {// 维护队首// i 物品的体积超了,注意这里是大于而不是大于等于,要把 r+0*vi也包括进来while(queue.length && j-queue[0] > vi*si) {queue.shift();}// 维护队尾while(queue.length && lastRowDp[queue[queue.length-1]] + (j - queue[queue.length-1]) /vi * wi <= lastRowDp[j]) {queue.pop();}// 入队queue.push(j);// 更新 dpdp[j] = lastRowDp[queue[0]] + (j-queue[0]) / vi * wi;}}}console.log(dp[maxVolum]);
}process.stdin.on('end', function() {batchCall(convert(buffer), solve)
});

参考:

  • 题目链接-多重背包1
  • 题目链接-多重背包2
  • 题目链接-多重背包3
  • 参考题解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/95369.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

成都建筑模板批发市场在哪?

成都作为中国西南地区的重要城市&#xff0c;建筑业蓬勃发展&#xff0c;建筑模板作为建筑施工的重要材料之一&#xff0c;在成都也有着广泛的需求。如果您正在寻找成都的建筑模板批发市场&#xff0c;广西贵港市能强优品木业有限公司是一家值得关注的供应商。广西贵港市能强优…

mysql面试题16:说说分库与分表的设计?常用的分库分表中间件有哪些?分库分表可能遇到的问题有哪些?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:说说分库与分表的设计? 在MySQL中,分库与分表是常用的数据库水平扩展技术,可以提高数据库的吞吐量和扩展性。下面将具体讲解MySQL中分库与分表…

<C++> String

目录 一、标准库中的string类 1. string类 2. string类的常用接口说明 2.1 string类对象的常见构造 2.2 string类对象的容量操作 2.3 string类对象的访问及遍历操作 2.4 string类对象的修改操作 2.5 string类非成员函数 总结 前言 C语言中&#xff0c;字符串是以 \0 结尾的一些…

[软件工具]opencv-svm快速训练助手教程解决opencv C++ SVM模型训练与分类实现任务支持C# python调用

opencv中已经提供了svm算法可以对图像实现多分类&#xff0c;使用svm算法对图像分类的任务多用于场景简单且对时间有要求的场景&#xff0c;因为opencv的svm训练一般只需要很短时间就可以完成训练任务。但是目前网上没有一个工具很好解决训练问题&#xff0c;大部分需要自己编程…

AWS Lambda Golang HelloWorld 快速入门

操作步骤 以下测试基于 WSL2 Ubuntu 22.04 环境 # 下载最新 golang wget https://golang.google.cn/dl/go1.21.1.linux-amd64.tar.gz# 解压 tar -C ~/.local/ -xzf go1.21.1.linux-amd64.tar.gz# 配置环境变量 PATH echo export PATH$PATH:~/.local/go/bin >> ~/.bashrc …

密码技术 (6) - 证书

一. 前言 前面介绍的公钥密码和数字签名&#xff0c;都无法解决一个问题&#xff0c;那就是判断自己获取的公钥是否期望的&#xff0c;不能确定公钥是否被中间攻击人掉包。所以&#xff0c;证书的作用是用来证明公钥是否合法的。本文介绍的证书就是解决证书的可靠性的技术。 二…

老卫带你学---leetcode刷题(4. 寻找两个正序数组的中位数)

4. 寻找两个正序数组的中位数 问题&#xff1a; 给定两个大小分别为 m 和 n 的正序&#xff08;从小到大&#xff09;数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。 算法的时间复杂度应该为 O(log (mn)) 。 示例 1&#xff1a;输入&#xff1a;nums1 [1…

Python3数据科学包系列(一):数据分析实战

Python3中类的高级语法及实战 Python3(基础|高级)语法实战(|多线程|多进程|线程池|进程池技术)|多线程安全问题解决方案 Python3数据科学包系列(一):数据分析实战 Python3数据科学包系列(二):数据分析实战 认识下数据科学中数据处理基础包: (1)NumPy 俗话说: 要学会跑需先…

React框架核心原理

一、整体架构 三大核心库与对应的组件 history -> react-router -> react-router-dom react-router 可视为react-router-dom 的核心&#xff0c;里面封装了<Router>&#xff0c;<Route>&#xff0c;<Switch>等核心组件,实现了从路由的改变到组件的更新…

sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第三周测验

课程1_第3周_测验题 目录&#xff1a;目录 第一题 1.以下哪一项是正确的&#xff1f; A. 【  】 a [ 2 ] ( 12 ) a^{[2](12)} a[2](12)是第12层&#xff0c;第2个训练数据的激活向量。 B. 【  】X是一个矩阵&#xff0c;其中每个列都是一个训练示例。 C. 【  】 a 4 […

【一、灵犀考试系统项目设计、框架搭建】

一、创建数据库 1、打开power designer&#xff0c;新建数据库模型 2、新建数据表&#xff0c;以及关系 【注意】 图片的类型有两种&#xff1a;varbinary 和 image varbinary : 二进制字节流&#xff0c;可以自动控制长度 image : 最大可放2G图片 3、创建数据库&#…

国庆假期作业day2

作业&#xff1a;创建一个双向链表&#xff0c;将26个英文字母通过头插的方式插入到链表中&#xff0c;通过尾删的方式将数据读取出来并删除 #ifndef _TEXT_H #define _TEXT_H #include<myhead.h> typedef int datatype; typedef struct dblist {union {datatype data;/…

后端面经学习自测(二)

文章目录 1、Http1.1和2.0的区别大概是什么&#xff1f;HTTP & HTTPS 2、HTTP&#xff0c;用户后续的操作&#xff0c;服务端如何知道属于同一个用户cookie & session & token手机验证码登录流程SSO单点登录 3、如果服务端是一个集群机器&#xff1f;4、hashmap是线…

[React源码解析] React的设计理念和源码架构 (一)

任务分割异步执行让出执法权 文章目录 1.React的设计理念1.1 Fiber1.2 Scheduler1.3 Lane1.4 代数效应 2.React的源码架构2.1 大概图示2.2 jsx2.3 Fiber双缓存2.4 scheduler2.5 Lane模型2.6 reconciler2.7 renderer2.8 concurrent 3.React源码调试 1.React的设计理念 Fiber: 即…

项目进展(八)-编写代码,驱动ADS1285

一、代码 根据芯片的数据手册编写部分驱动&#xff0c;首先看部分引脚的波形&#xff1a; DRDY: CS&#xff1a; 首先在代码初始化时连续写入三个寄存器&#xff1a; void WriteReg(uint8_t startAddr, uint8_t *regData, uint8_t number) {uint8_t i0;// 循环写number1次…

基于STM32 ZigBee无线远程火灾报警监控系统物联网温度烟雾

实践制作DIY- GC00168---ZigBee无线远程监控系统 一、功能说明&#xff1a; 基于STM32单片机设计---ZigBee无线远程监控系统 二、功能说明&#xff1a; 1个主机&#xff1a;STM32F103C系列单片机LCD1602显示器蜂鸣器 ZigBee无线模块3个按键&#xff08;设置、加、减&#xff0…

剑指offer——JZ77 按之字形顺序打印二叉树 解题思路与具体代码【C++】

一、题目描述与要求 按之字形顺序打印二叉树_牛客题霸_牛客网 (nowcoder.com) 题目描述 给定一个二叉树&#xff0c;返回该二叉树的之字形层序遍历&#xff0c;&#xff08;第一层从左向右&#xff0c;下一层从右向左&#xff0c;一直这样交替&#xff09; 数据范围&#x…

【树】树的直径和重心

目录 一.树的直径 &#xff08;1&#xff09;定义 &#xff08;2&#xff09;思路 &#xff08;3&#xff09;例题 &#xff08;4&#xff09;std(第一小问) 二.树的重心 &#xff08;1&#xff09;介绍 &#xff08;2&#xff09;求重心 &#xff08;3&#xff09;例…

【逐步剖C】-第十一章-动态内存管理

一、为什么要有动态内存管理 从我们平常的学习经历来看&#xff0c;所开辟的数组一般都为固定长度大小的数组&#xff1b;但从很多现实需求来看需要我们开辟一个长度“可变”的数组&#xff0c;即这个数组的大小不能在建立数组时就指定&#xff0c;需要根据某个变量作为标准。…

我的创作纪念日-第1024天

文章目录 一、机缘二、收获三、日常四、憧憬 一、机缘 不知不觉&#xff0c;已经加入CSDN这个大家庭5年多了&#xff0c;回想起3年前发布第一篇博客的时候&#xff0c;那时我记得很清楚&#xff0c;我在做项目时遇到报错&#xff0c;解决问题之后&#xff0c;然后想起了好多人…