sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第三周测验

课程1_第3周_测验题

目录:目录

第一题

1.以下哪一项是正确的?

A. 【  】 a [ 2 ] ( 12 ) a^{[2](12)} a[2](12)是第12层,第2个训练数据的激活向量。

B. 【  】X是一个矩阵,其中每个列都是一个训练示例。

C. 【  】 a 4 [ 2 ] a^{[2]}_4 a4[2] 是第2层,第4个训练数据的激活输出。

D. 【  】 a 4 [ 2 ] a^{[2]}_4 a4[2] 是第2层,第4个神经元的激活输出。

E. 【  】 a [ 2 ] a^{[2]} a[2] 表示第2层的激活向量。

F. 【  】 a [ 2 ] ( 12 ) a^{[2](12)} a[2](12)是第2层,第12个数据的激活向量。

G. 【  】 X X X是一个矩阵,其中每个行是一个训练数据。

答案:

B.【 √ 】X是一个矩阵,其中每个列都是一个训练示例。

D.【 √ 】 a 4 [ 2 ] a^{[2]}_4 a4[2] 是第2层,第4个神经元的激活输出。

E.【 √ 】 a [ 2 ] a^{[2]} a[2] 表示第2层的激活向量。

F.【 √ 】 a [ 2 ] ( 12 ) a^{[2](12)} a[2](12)是第2层,第12个数据的激活向量。

第二题

2.对于隐藏单元,tanh激活通常比sigmoid激活函数更有效,因为其输出的平均值接近于零,因此它可以更好地将数据集中到下一层。

A. 【  】对
B. 【  】不对

答案:

A.【 √ 】对

note:正如tanh所看到的,tanh的输出在-1和1之间,因此它将数据集中在一起,使得下一层的学习变得更加简单。

第三题

3.以下哪一个是层的正向传播的正确矢量化实现,其中 1 ≤ l ≤ L 1 \le l \le L 1lL

A. 【  】

Z [ l ] = W [ l ] A [ l ] + b [ l ] Z^{[l]}=W^{[l]}A^{[l]}+b^{[l]} Z[l]=W[l]A[l]+b[l]

A [ l + 1 ] = g [ l ] ( Z [ l ] ) A^{[l+1]}=g^{[l]}(Z^{[l]}) A[l+1]=g[l](Z[l])

B. 【  】

Z [ l ] = W [ l ] A [ l ] + b [ l ] Z^{[l]}=W^{[l]}A^{[l]}+b^{[l]} Z[l]=W[l]A[l]+b[l]

A [ l + 1 ] = g [ l + 1 ] ( Z [ l ] ) A^{[l+1]}=g^{[l+1]}(Z^{[l]}) A[l+1]=g[l+1](Z[l])

C. 【  】

Z [ l ] = W [ l − 1 ] A [ l ] + b [ l ] Z^{[l]}=W^{[l-1]}A^{[l]}+b^{[l]} Z[l]=W[l1]A[l]+b[l]

A [ l ] = g [ l ] ( Z [ l ] ) A^{[l]}=g^{[l]}(Z^{[l]}) A[l]=g[l](Z[l])

D. 【  】

Z [ l ] = W [ l ] A [ l − 1 ] + b [ l ] Z^{[l]}=W^{[l]}A^{[l-1]}+b^{[l]} Z[l]=W[l]A[l1]+b[l]

A [ l ] = g [ l ] ( Z [ l ] ) A^{[l]}=g^{[l]}(Z^{[l]}) A[l]=g[l](Z[l])

答案:

D.【 √ 】

Z [ l ] = W [ l ] A [ l − 1 ] + b [ l ] Z^{[l]}=W^{[l]}A^{[l-1]}+b^{[l]} Z[l]=W[l]A[l1]+b[l]

A [ l ] = g [ l ] ( Z [ l ] ) A^{[l]}=g^{[l]}(Z^{[l]}) A[l]=g[l](Z[l])

第四题

4.您正在构建一个用于识别黄瓜(y=1)与西瓜(y=0)的二进制分类器。对于输出层,您建议使用哪一个激活函数?

A. 【  】ReLU
B. 【  】Leaky ReLU
C. 【  】sigmoid
D. 【  】tanh

答案:

C.【 √ 】sigmoid

note:

  1. 来自sigmoid函数的输出值可以很容易地理解为概率。
  2. Sigmoid输出的值介于0和1之间,这使其成为二元分类的一个非常好的选择。 如果输出小于0.5,则可以将其归类为0,如果输出大于0.5,则归类为1。 它也可以用tanh来完成,但是它不太方便,因为输出在-1和1之间。

第五题

5.考虑以下代码:
A = np.random.randn(4,3)
B = np.sum(A, axis = 1, keepdims = True)
B.shape是多少?

A. 【  】(4,)

B. 【  】(1, 3)

C. 【  】(, 3)

D. 【  】(4, 1)

答案:

D.【 √ 】shape = (4, 1)

note:我们使用(keepdims = True)来确保A.shape是(4,1)而不是(4,),它使我们的代码更加严格。

第六题

6.假设你已经建立了一个神经网络。您决定将权重和偏差初始化为零。以下哪项陈述是正确的?(选出所有正确项)

A. 【  】第一隐藏层中的每个神经元将执行相同的计算。因此,即使在梯度下降的多次迭代之后,层中的每个神经元将执行与其他神经元相同的计算。

B. 【  】第一隐层中的每个神经元在第一次迭代中执行相同的计算。但是在梯度下降的一次迭代之后,他们将学会计算不同的东西,因为我们已经“破坏了对称性”。

C. 【  】第一个隐藏层中的每个神经元将执行相同的计算,但不同层中的神经元执行不同的计算,因此我们完成了课堂上所描述的“对称性破坏”。

D. 【  】即使在第一次迭代中,第一个隐藏层的神经元也会执行不同的计算,因此,它们的参数会以自己的方式不断演化。

答案:

A.【 √ 】第一个隐藏层中的每个神经元节点将执行相同的计算。 所以即使经过多次梯度下降迭代后,层中的每个神经元节点都会计算出与其他神经元节点相同的东西。

第七题

7.逻辑回归的权重w应该随机初始化,而不是全部初始化为全部零,否则,逻辑回归将无法学习有用的决策边界,因为它将无法“打破对称”。

A. 【  】对
B. 【  】不对

答案:

B.【 √ 】不对

note:
Logistic回归没有隐藏层。 如果将权重初始化为零,则Logistic回归中的第一个示例x将输出零,但Logistic回归的导数取决于不是零的输入x(因为没有隐藏层)。 因此,在第二次迭代中,如果x不是常量向量,则权值遵循x的分布并且彼此不同。

第八题

8.你已经为所有隐藏的单位建立了一个使用tanh激活的网络。使用np.random.randn(…, …) * 1000将权重初始化为相对较大的值。会发生什么?

A. 【  】没关系。只要随机初始化权重,梯度下降不受权重大小的影响。

B. 【  】这将导致tanh的输入也非常大,从而导致梯度也变大。因此,你必须将设置得非常小,以防止发散;这将减慢学习速度。

C. 【  】这将导致tanh的输入也非常大,导致单元被“高度激活”。与权重从小值开始相比,加快了学习速度。

D. 【  】这将导致tanh的输入也非常大,从而导致梯度接近于零。因此,优化算法将变得缓慢。

答案:

D.【 √ 】这将导致tanh的输入也很大,因此导致梯度接近于零, 优化算法将因此变得缓慢。

note:tanh对于较大的值变得平坦,这导致其梯度接近于零。 这减慢了优化算法。

第九题

9.考虑以下1个隐层的神经网络:
在这里插入图片描述

A. 【  】 W [ 1 ] W^{[1]} W[1]的形状是(2, 4)

B. 【  】 b [ 1 ] b^{[1]} b[1]的形状是(4, 1)

C. 【  】 W [ 1 ] W^{[1]} W[1]的形状是(4, 2)

D. 【  】 b [ 1 ] b^{[1]} b[1]的形状是(2, 1)

E. 【  】 W [ 2 ] W^{[2]} W[2]的形状是(1, 4)

F. 【  】 b [ 2 ] b^{[2]} b[2]的形状是(4, 1)

G. 【  】 W [ 2 ] W^{[2]} W[2]的形状是(4, 1)

H. 【  】 b [ 2 ] b^{[2]} b[2]的形状是(1, 1)

答案:

B.【 √ 】 b [ 1 ] b^{[1]} b[1]的形状是(4, 1)

C.【 √ 】 W [ 1 ] W^{[1]} W[1]的形状是(4, 2)

E.【 √ 】 W [ 2 ] W^{[2]} W[2]的形状是(1, 4)

H.【 √ 】 b [ 2 ] b^{[2]} b[2]的形状是(1, 1)

第十题

10.在和上一问相同的网络中, Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]的维度是多少?

A. 【  】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(4,1)

B. 【  】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(1,4)

C. 【  】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(4,m)

D. 【  】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(4,2)

答案:

C.【 √ 】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(4,m)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/95359.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【一、灵犀考试系统项目设计、框架搭建】

一、创建数据库 1、打开power designer,新建数据库模型 2、新建数据表,以及关系 【注意】 图片的类型有两种:varbinary 和 image varbinary : 二进制字节流,可以自动控制长度 image : 最大可放2G图片 3、创建数据库&#…

国庆假期作业day2

作业&#xff1a;创建一个双向链表&#xff0c;将26个英文字母通过头插的方式插入到链表中&#xff0c;通过尾删的方式将数据读取出来并删除 #ifndef _TEXT_H #define _TEXT_H #include<myhead.h> typedef int datatype; typedef struct dblist {union {datatype data;/…

后端面经学习自测(二)

文章目录 1、Http1.1和2.0的区别大概是什么&#xff1f;HTTP & HTTPS 2、HTTP&#xff0c;用户后续的操作&#xff0c;服务端如何知道属于同一个用户cookie & session & token手机验证码登录流程SSO单点登录 3、如果服务端是一个集群机器&#xff1f;4、hashmap是线…

[React源码解析] React的设计理念和源码架构 (一)

任务分割异步执行让出执法权 文章目录 1.React的设计理念1.1 Fiber1.2 Scheduler1.3 Lane1.4 代数效应 2.React的源码架构2.1 大概图示2.2 jsx2.3 Fiber双缓存2.4 scheduler2.5 Lane模型2.6 reconciler2.7 renderer2.8 concurrent 3.React源码调试 1.React的设计理念 Fiber: 即…

项目进展(八)-编写代码,驱动ADS1285

一、代码 根据芯片的数据手册编写部分驱动&#xff0c;首先看部分引脚的波形&#xff1a; DRDY: CS&#xff1a; 首先在代码初始化时连续写入三个寄存器&#xff1a; void WriteReg(uint8_t startAddr, uint8_t *regData, uint8_t number) {uint8_t i0;// 循环写number1次…

基于STM32 ZigBee无线远程火灾报警监控系统物联网温度烟雾

实践制作DIY- GC00168---ZigBee无线远程监控系统 一、功能说明&#xff1a; 基于STM32单片机设计---ZigBee无线远程监控系统 二、功能说明&#xff1a; 1个主机&#xff1a;STM32F103C系列单片机LCD1602显示器蜂鸣器 ZigBee无线模块3个按键&#xff08;设置、加、减&#xff0…

剑指offer——JZ77 按之字形顺序打印二叉树 解题思路与具体代码【C++】

一、题目描述与要求 按之字形顺序打印二叉树_牛客题霸_牛客网 (nowcoder.com) 题目描述 给定一个二叉树&#xff0c;返回该二叉树的之字形层序遍历&#xff0c;&#xff08;第一层从左向右&#xff0c;下一层从右向左&#xff0c;一直这样交替&#xff09; 数据范围&#x…

【树】树的直径和重心

目录 一.树的直径 &#xff08;1&#xff09;定义 &#xff08;2&#xff09;思路 &#xff08;3&#xff09;例题 &#xff08;4&#xff09;std(第一小问) 二.树的重心 &#xff08;1&#xff09;介绍 &#xff08;2&#xff09;求重心 &#xff08;3&#xff09;例…

【逐步剖C】-第十一章-动态内存管理

一、为什么要有动态内存管理 从我们平常的学习经历来看&#xff0c;所开辟的数组一般都为固定长度大小的数组&#xff1b;但从很多现实需求来看需要我们开辟一个长度“可变”的数组&#xff0c;即这个数组的大小不能在建立数组时就指定&#xff0c;需要根据某个变量作为标准。…

我的创作纪念日-第1024天

文章目录 一、机缘二、收获三、日常四、憧憬 一、机缘 不知不觉&#xff0c;已经加入CSDN这个大家庭5年多了&#xff0c;回想起3年前发布第一篇博客的时候&#xff0c;那时我记得很清楚&#xff0c;我在做项目时遇到报错&#xff0c;解决问题之后&#xff0c;然后想起了好多人…

Ipython和Jupyter Notebook介绍

Ipython和Jupyter Notebook介绍 Python、IPython和Jupyter Notebook是三个不同但密切相关的工具。简而言之&#xff0c;Python是编程语言本身&#xff0c;IPython是对Python的增强版本&#xff0c;而Jupyter Notebook是一种在Web上进行交互式计算的环境&#xff0c;使用IPytho…

ChatGPT付费创作系统V2.3.4独立版 +WEB端+ H5端 + 小程序最新前端

人类小徐提供的GPT付费体验系统最新版系统是一款基于ThinkPHP框架开发的AI问答小程序&#xff0c;是基于国外很火的ChatGPT进行开发的Ai智能问答小程序。当前全民热议ChatGPT&#xff0c;流量超级大&#xff0c;引流不要太简单&#xff01;一键下单即可拥有自己的GPT&#xff0…

时序分解 | Matlab实现CEEMDAN完全自适应噪声集合经验模态分解时间序列信号分解

时序分解 | Matlab实现CEEMDAN完全自适应噪声集合经验模态分解时间序列信号分解 目录 时序分解 | Matlab实现CEEMDAN完全自适应噪声集合经验模态分解时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现CEEMDAN完全自适应噪声集合经验模态分解时间…

C++(STL容器适配器)

前言&#xff1a; 适配器也称配接器&#xff08;adapters&#xff09;在STL组件的灵活组合运用功能上&#xff0c;扮演着轴承、转换器的角色。 《Design Patterns》对adapter的定义如下&#xff1a;将一个class的接口转换为另一个class的接口&#xff0c;使原本因接口不兼容而…

Eureka

大家好我是苏麟今天带来Eureka的使用 . 提供者和消费者 在服务调用关系中&#xff0c;会有两个不同的角色&#xff1a; 服务提供者&#xff1a;一次业务中&#xff0c;被其它微服务调用的服务。&#xff08;提供接口给其它微服务&#xff09; 服务消费者&#xff1a;一次业务…

CCF CSP认证 历年题目自练 Day22

CCF CSP认证 历年题目自练 Day22 题目一 试题编号&#xff1a; 201912-1 试题名称&#xff1a; 报数 时间限制&#xff1a; 1.0s 内存限制&#xff1a; 512.0MB 题目分析&#xff08;个人理解&#xff09; 每一个人都要报多少个数字&#xff0c;我选择字典存储&#xff0…

私有云盘:lamp部署nextcloud+高可用集群

目录 一、实验准备&#xff1a; 二、配置mariadb主从复制 三台主机下载mariadb 1&#xff09;主的操作 2&#xff09;从的操作 3&#xff09;测试数据是否同步 三、配置nfs让web服务挂载 1、安装 2、配置nfs服务器 3、配置web服务的httpd 4、测试 四、web 服务器 配…

进程调度算法之时间片轮转调度(RR),优先级调度以及多级反馈队列调度

1.时间片轮转调度算法(RR) round Robin 1.算法思想 公平地、轮流地为各个进程服务&#xff0c;让每个进程在一定时间间隔内都可以得到响应。 2.算法规则 按照各进程到达就绪队列的顺序&#xff0c;轮流让各个进程执行一个时间片&#xff08;如100ms&#xff09;。 若进程未…

C/C++学习 -- HMAC算法

1. HMAC算法概述 HMAC&#xff0c;全称为HMAC-MD5、HMAC-SHA1、HMAC-SHA256等&#xff0c;是一种在数据传输中验证完整性和认证来源的方法。它结合了哈希函数和密钥&#xff0c;通过在数据上应用哈希函数&#xff0c;生成一个带密钥的散列值&#xff0c;用于验证数据的完整性。…

10.1 今日任务:select实现服务器并发

#include <myhead.h>#define ERR_MSG(msg) do{\fprintf(stderr, "__%d__:", __LINE__); \perror(msg);\ }while(0)#define PORT 8888 //端口号&#xff0c;范围1024~49151 #define IP "192.168.112.115" //本机IP&#xff0c;ifco…