【MATLAB-基于直方图优化的图像去雾技术】

【MATLAB-基于直方图优化的图像去雾技术】

  • 1 直方图均衡
  • 2 程序实现
  • 3 局部直方图处理

1 直方图均衡

直方图是图像的一种统计表达形式。对于一幅灰度图像来说,其灰度统计直方图可以反映该图像中不同灰度级出现的统计情况。一般而言,图像的视觉效果和其直方图有对应关系,通过调整或变换其直方图的形状会对图像的显示效果有很大影响。

直方图均衡化主要用于增强灰度值动态范围偏小的图像的对比度,它的基本思想是把原始图像的灰度统计直方图变换为均匀分布形式,这样就增加了像素灰度值的动态范围,从而达到增强图像整体对比度的效果。
在这里插入图片描述

数字图像是离散化的数值矩阵,其直方图可以被视为一个离散函数,表示数字图像中每个灰度级与其出现概率间的统计关系。假设一幅数字图像 f(x,y)的像素总数为 N,r_k表示第 k 个灰度级对应的灰度,n_k表示灰度为r_k 的像素个数即频数,若用横坐标表示灰度级,用纵坐标表示频数,则直方图可被定义为P(r_k)=n_k/N,其中,P(r_k)表示第k灰度出现的相对频数即概率。直方图在一定程度上能够反映数字图像的概貌性描述,包括图像的灰度范围、灰度分布、整幅图像的亮度均值和阴暗对比度等,并可以此为基础进行分析来得出对图像进一步处理的重要依据直方图均衡化也叫作直方图均匀化,就是把给定图像的直方图变换成均匀分布的直方图,是一种较为常用的灰度增强算法。

根据信息论的相关理论,我们可以知道图像在经直方图均衡化后,将会包含更多的信息量进而能突出某些图像特征。假设图像具有 n级灰度,其第级灰度出现的概率为 P_i, 则该级度所含的信息量为:
I ( i ) = p i log ⁡ 1 p i = − p i log ⁡ p i I(i)=p_i \log \frac{1}{p_i}=-p_i \log p_i I(i)=pilogpi1=pilogpi

整幅图像的信息最为:
H = ∑ i = 0 n − 1 I ( i ) = − ∑ i = 0 n − 1 p i log ⁡ p i H=\sum_{i=0}^{n-1} I(i)=-\sum_{i=0}^{n-1} p_i \log p_i H=i=0n1I(i)=i=0n1pilogpi
信息论已经证明,具有均匀分布直方图的图像,其信息量H 最大。即当 P 0 = P 1 = . . . = P n − 1 P_0=P_1=...= P_{n-1} P0=P1=...=Pn1时,H有最大值。

2 程序实现

% 灰度图直方图均衡
% 加载路径和所有文件
clc;clear;close all;
cd(fileparts(mfilename('fullpath')));
addpath(genpath(cd));if ~isfolder('HistGraph')mkdir('HistGraph');
endPath = '.\';                   % 设置数据存放的文件夹路径
File = dir(fullfile(Path,'*.jpg'));  % 显示文件夹下所有符合后缀名为.txt文件的完整信息
FileNames = {File.name}';            % 提取符合后缀名为.txt的所有文件的文件名,转换为n行1列for i = 1:size(FileNames,1)I = imread(FileNames{i});R = I(:,:,1);M = histeq(R);In = M;figure;subplot(2, 2, 1); imshow(I); title('原图像', 'FontWeight', 'Bold');subplot(2, 2, 2); imshow(In); title('处理后的图像', 'FontWeight', 'Bold');imwrite(In,['HistGraph\',FileNames{i}],'jpg')Q = I; W = In;subplot(2, 2, 3); imhist(Q, 64); title('原灰度直方图', 'FontWeight', 'Bold');subplot(2, 2, 4); imhist(W, 64); title('处理后的灰度直方图', 'FontWeight', 'Bold');
end

在这里插入图片描述

% 彩色图直方图均衡
clear; close all;
I = imread('images\sweden_input.jpg');
R = I(:,:,1);
G = I(:,:,2);
B = I(:,:,3);
M = histeq(R);
N = histeq(G);
L = histeq(B);
In = cat(3, M, N, L);figure;
subplot(2, 2, 1); imshow(I); title('原图像', 'FontWeight', 'Bold');
subplot(2, 2, 2); imshow(In); title('处理后的图像', 'FontWeight', 'Bold');Q = rgb2gray(I);
W = rgb2gray(In);
subplot(2, 2, 3); imhist(Q, 64); title('原灰度直方图', 'FontWeight', 'Bold');
subplot(2, 2, 4); imhist(W, 64); title('处理后的灰度直方图', 'FontWeight', 'Bold');

在这里插入图片描述
全局直方图去雾效果明显,但在图像整体上容易出现色彩失真现象。

3 局部直方图处理

clear; close all;
I = imread('images\sweden_input.jpg');
g1 = GetLocalHisteq(I(:, :, 1));
g2 = GetLocalHisteq(I(:, :, 2));
g3 = GetLocalHisteq(I(:, :, 3));In = cat(3, g1, g2, g3);figure;
subplot(2, 2, 1); imshow(I); title('原图像', 'FontWeight', 'Bold');
subplot(2, 2, 2); imshow(In); title('处理后的图像', 'FontWeight', 'Bold');
Q = rgb2gray(I);
W = rgb2gray(In);
subplot(2, 2, 3); imhist(Q, 64); title('原灰度直方图', 'FontWeight', 'Bold');
subplot(2, 2, 4); imhist(W, 64); title('处理后的灰度直方图', 'FontWeight', 'Bold');function g = GetLocalHisteq(I)
% 对灰度图像,进行局部直方图均衡化
% 输入参数:
%  I——图像矩阵
% 输出参数:
%  g——结果图像
% 调用库函数adapthisteq,执行局部均衡化增强
g = adapthisteq(I,'clipLimit',0.02,'Distribution','rayleigh');
end

在这里插入图片描述
局部直方图的处理有效保持原图像的局部特征,未出现明显的色彩失真,但该图像整体的亮度偏暗,依然在某些区域模糊。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/93667.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

javaWeb学生信息管理

一、引言 学生信息管理系统是基于Java Web技术开发的一个全栈应用,用于管理学生的基本信息。本系统采用Eclipse作为开发工具,Navicat用于MySQL数据库管理,运行在JDK1.8、Tomcat9.0、MySQL8.0环境下。前端采用JavaScript、jQuery、Bootstrap4…

五款可替代163邮箱的电子邮件服务

在众多邮箱品牌中,163邮箱作为中国最早的邮箱服务提供商之一,其出海之路并不顺利。本文将探讨163邮箱出海的劣势,并介绍一些替代品,以帮助用户更好地选择适合自己的邮箱服务。 “163邮箱的替代品有哪些?外贸行业适合选…

Go_原子操作和锁

原子操作和锁 本文先探究并发问题,再探究锁和原子操作解决问题的方式,最后进行对比。 并发问题 首先,我们看一下程序 num该程序表面看上去一步就可以运行完成,但是实际上,在计算机中是分三步运行的,如下…

世界第一ERP厂商SAP,推出类ChatGPT产品—Joule

9月27日,世界排名第一ERP厂商SAP在官网宣布,推出生成式AI助手Joule,并将其集成在采购、供应链、销售、人力资源、营销、数据分析等产品矩阵中,帮助客户实现降本增效。 据悉,Joule是一款功能类似ChatGPT的产品&#xf…

国庆day2---select实现服务器并发

select.c&#xff1a; #include <myhead.h>#define ERR_MSG(msg) do{\fprintf(stderr,"__%d__:",__LINE__);\perror(msg);\ }while(0)#define IP "192.168.1.3" #define PORT 8888int main(int argc, const char *argv[]) {//创建报式套接字socketi…

S-Clustr(影子集群)僵尸网络@Мартин.

公告 项目地址:https://github.com/MartinxMax/S-Clustr/tree/V1.0.0 1.成功扩展3类嵌入式设备,组建庞大的"僵尸网络" |——C51[开发中] |——Arduino |——合宙AIR780e[开发中] 2.攻击者端与服务端之间通讯过程全程加密,防溯源分析 3.Generate一键自动生成Arduino…

【机器学习】熵和概率分布,图像生成中的量化评估IS与FID

详解机器学习中的熵、条件熵、相对熵、交叉熵 图像生成中常用的量化评估指标通常有Inception Score (IS)和Frchet Inception Distance (FID) Inception Score (IS) 与 Frchet Inception Distance (FID) GAN的量化评估方法——IS和FID&#xff0c;及其pytorch代码

计算机组成原理期末复习

第一章 上机前的准备&#xff1a;建立数学模型、确定计算方法和编制解题程序n位操作码有 2 n 2^n 2n种不同操作主储存器&#xff08;主存/内存&#xff09;包括存储体M、各种逻辑部件及控制电路。储存体有多个储存单元&#xff0c;储存单元有多个储存元件&#xff0c;每个存储…

《视觉 SLAM 十四讲》V2 第 4 讲 李群与李代数 【什么样的相机位姿 最符合 当前观测数据】

P71 文章目录 4.1 李群与李代数基础4.1.3 李代数的定义4.1.4 李代数 so(3)4.1.5 李代数 se(3) 4.2 指数与对数映射4.2.1 SO(3)上的指数映射罗德里格斯公式推导 4.2.2 SE(3) 上的指数映射SO(3),SE(3),so(3),se(3)的对应关系 4.3 李代数求导与扰动模型4.3.2 SO(3)上的李代数求导…

分布式并行训练(DP、DDP、DeepSpeed)

[pytorch distributed] 01 nn.DataParallel 数据并行初步 数据并行 vs. 模型并行 数据并行&#xff1a;模型拷贝&#xff08;per device&#xff09;&#xff0c;数据 split/chunk&#xff08;对batch切分&#xff09; 每个device上都拷贝一份完整模型&#xff0c;每个device分…

spark SQL 任务参数调优1

1.背景 要了解spark参数调优&#xff0c;首先需要清楚一部分背景资料Spark SQL的执行原理&#xff0c;方便理解各种参数对任务的具体影响。 一条SQL语句生成执行引擎可识别的程序&#xff0c;解析&#xff08;Parser&#xff09;、优化&#xff08;Optimizer&#xff09;、执行…

RabbitMQ核心总结

AMQP协议核心概念 RabbitMQ是基于AMQP协议的&#xff0c;通过使用通用协议就可以做到在不同语言之间传递。 server&#xff1a;又称broker&#xff0c;接受客户端连接&#xff0c;实现AMQP实体服务。 connection&#xff1a;连接和具体broker网络连接。 channel&#xff1a…

堆栈与堆(Stack vs Heap)有什么区别?

​编写有效的代码需要了解堆栈和堆内存&#xff0c;这使其成为学习编程的重要组成部分。不仅如此&#xff0c;新程序员或职场老手都应该完全熟悉堆栈内存和堆内存之间的区别&#xff0c;以便编写有效且优化的代码。 这篇博文将对这两种内存分配技术进行全面的比较。通过本文的…

网络协议--链路层

2.1 引言 从图1-4中可以看出&#xff0c;在TCP/IP协议族中&#xff0c;链路层主要有三个目的&#xff1a; &#xff08;1&#xff09;为IP模块发送和接收IP数据报&#xff1b; &#xff08;2&#xff09;为ARP模块发送ARP请求和接收ARP应答&#xff1b; &#xff08;3&#xf…

Linux文件系统及命令 | 实用操作指令汇总

目录 ctrl c 强制停止与ctrl d 退出或登出 history&#xff1a;历史命令搜索 clear:清屏 ln命令&#xff1a;创建软硬连接 cat命令&#xff1a;显示文件命令 less命令&#xff1a;查看大文件 grep命令&#xff1a;正则表达式使用 sort命令&#xff1a;排序 uniq命令…

JSON的MIME媒体类型是application/json

JSON&#xff08;全称 JavaScript Object Notation&#xff09;即JavaScript对象表示法&#xff0c;通知使用application/json媒体类型。 目录 1、JSON介绍 2、JSON语法 3、实践总结 运行环境&#xff1a; Windows-7-Ultimate-x64、Windows-10-BusinessEditions-21h2-x64 1…

区块链实验室(27) - 区块链+物联网应用案例

分享最新的区块链物联网应用案例&#xff1a;HPCLS-BC

【Kafka专题】Kafka快速实战以及基本原理详解

目录 前言课程内容一、Kafka介绍1.1 MQ的作用1.2 为什么用Kafka 二、Kafka快速上手2.1 实验环境2.2 单机服务体验2.3 认识Kafka模型架构2.4 Kafka集群2.5 理解服务端的Topic、Partion和Broker2.6 章节总结&#xff1a;Kafka集群的整体结构 三、Kraft集群&#xff08;拓展&#…

集群-Nacos-2.2.3、Nginx-1.24.0集群配置

Nacos集群 高可用 Nginx 集群Nacos 集群&#xff08;至少三个实例&#xff09;高可用数据库集群&#xff08;取代 Nacos 内嵌数据库&#xff09; Nacos 集群搭建 集群使用版本&#xff1a; Nginx 1.24.0 Nacos 2.2.3 服务器IP服务器版本Nginx18.18.18.40CentOS-7.9MySQL18.18.…

样品运输与贮存

声明 本文是学习GB-T 42959-2023 饲料微生物检验 采样. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本文件规定了以微生物检验为目的的采样原则、采样人员、设备和材料、采样方案、采样步骤和采样 报告。 本文件适用于以微生物检验为目的…