分布式并行训练(DP、DDP、DeepSpeed)

[pytorch distributed] 01 nn.DataParallel 数据并行初步

  • 数据并行 vs. 模型并行
    • 数据并行:模型拷贝(per device),数据 split/chunk(对batch切分)

      • 每个device上都拷贝一份完整模型,每个device分别处理1个batch的一部分(如batch_size=64, 2个device, 每device处理32个样本)
      • 梯度反向传播时,每个设备上的梯度求和(求和才是一个完整batch所有样本的loss),汇入中心设备/参数服务器(默认gpu0)对模型进行梯度优化。
    • 模型并行:数据拷贝(per device),模型 split/chunk(显然是单卡放不下模型的情况下)

  • DP => DDP
    • DPnn.DataParallel (不推荐)
      • https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html
    • DDP: DistributedDataParallel (推荐)
    • Use nn.parallel.DistributedDataParallel instead of multiprocessing or nn.DataParallel and Distributed Data Parallel.

1. 数据并行DP(nn.DataParallel)

预先定义一下Dataset和Model

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoaderclass RandomDataset(Dataset):def __init__(self, size, length):self.len = length# 100*5self.data = torch.randn(length, size)def __getitem__(self, index):# (5, )return self.data[index]def __len__(self):# 100return self.lenclass Model(nn.Module):# Our modeldef __init__(self, input_size, output_size):# 5 => 2super(Model, self).__init__()self.fc = nn.Linear(input_size, output_size)def forward(self, input):output = self.fc(input)print("\tIn Model: input size", input.size(),"output size", output.size())return outputinput_size = 5  # 模型输入数据维度(b,n) = (30, 5)
output_size = 2  # 模型输出数据维度(b,n) = (30, 2)batch_size = 30  # batch size
data_size = 100  # 数据集样本数量rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),batch_size=batch_size, shuffle=True)
# 构造优化器和损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.MSELoss()# 模拟目标值
target = torch.randn(64, 5) 

step1: 并行化包裹模型

# Parameters and DataLoaders                    
# (5, 2)
model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:  # 如果不止1张GPU # 构建数据并行模型device_ids = [0, 1]  # 使用的设备ID列表# 如3张GPU,dim = 0,[30, xxx] -> [15, ...], [15, ...] on 2 GPUsmodel = nn.DataParallel(model, device_ids)  # 并行化,默认使用所有device加载数据
  • torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)
    • model= 指传入的模型
    • device_ids=None,
      • 参与训练的 GPU 有哪些,device_ids=gpus,默认None是使用全部device;
    • output_device=None
      • 指定中心设备(参数服务器),用于汇总梯度的 GPU 是哪个,output_device=gpus[0]
    • dim=0
      • 从那一维度进行数据切分,默认batch维度
  • 在执行 forward/backward 之前,使用 DataParallel 将 model 复制到 device_ids 指定设备上,进行数据并行处理
    • model.to('cuda:0')
    • 不同的是tensor的to(device)是在device上生成一个拷贝,不改变原来cpu上的tensor;而model是直接将原model转移到gpu上。

step2:加载到device0

设置中心设备(参数服务器),用于反向传播时的梯度汇总,一般指定cuda:0

# 将模型从cpu放在gpu 0上 
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') 
model.to(device)

step3:forward前向传播

模型forward时,将data_loader加载的一个batch的数据进行切分,送入不同device的模型进行计算,再将结果合并输出。

for data in rand_loader:# input_var can be on any device, including CPUinput = data.to(device)
#     input = dataoutput = model(input)print("Outside: input size", input.size(),"output_size", output.size())
"""In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
"""

step4:反向传播梯度聚合

loss.backward()分别在每个device上计算loss的梯度,average_gradients(model)将梯度聚合到中心设备/参数服务器(cuda:0)上,进行梯度优化

	# 在每个设备上进行前向传播和梯度计算loss = criterion(output, target)loss.backward()# 对各个设备上的梯度进行求和average_gradients(model)# 使用原始设备模型进行梯度优化optimizer.step()

2. 分布式数据并行DDP(nn.parallel.DistributedDataParallel)

multiple GPUs in a single machine/server/node:单机多卡

  • 分布式数据并行时,模型(model parameters)/优化器(optimizer states)每张卡都会拷贝一份(replicas)
    • DDP 始终在卡间维持着模型参数和优化器状态的同步一致性在整个训练过程中;
  • Data Parallel,一个batch的数据通过 DistributedSampler 切分split 分发到不同的 gpus 上
    • 此时虽然模型/optimizer 相同,但因为每个device的数据输入不同,导致 loss 不同,反向传播时计算到的梯度也会不同
    • 此时 ddp 通过 ring all-reduce algorithm ,保证每个batch step结束后不同卡间model/optimizer 的同步一致性

在这里插入图片描述

  • 如上图所示,Ring all-reduce algorithm
    • 首先会将所有的 gpu cards 连成一个 ring环
    • 其同步过程,不需要等待所有的卡都计算完一轮梯度,
    • 经过这个同步过程之后,所有的卡的 models/optimizers 就都会保持一致的状态;

在这里插入图片描述

  • Ring all-reduce algorithm 计算和同步的几个过程
    • 红线:GPUs 分别计算损失(forward)和梯度(backward)
    • 蓝线:梯度的聚合到中心device/参数服务器上(gpu0)
    • 绿线:(模型/优化器)参数的更新及广播(broadcast);

其实参数服务器可以是一个GPU0,也可以是CPU,也可以是所有GPU:
在这里插入图片描述
但将数据发送到GPU0会成为device通信的瓶颈:
在这里插入图片描述

所以采用环形的梯度聚合方式更加高效:
在这里插入图片描述

DDP基本概念

  • world

    • world 表示包含所有进程的组(所有gpu的集合)。
    • 每个进程通常对应一个 GPU, world 中的进程可以相互通信,这使得使用分布式数据并行(Distributed Data Parallel, DDP)进行训练成为可能。
  • world_size(gpu个数/进程个数):

    • world_size 表示分布式训练环境中的总进程数/gpu数。
    • 每个进程都会被分配一个唯一的标识符(rank),从 0 到 world_size-1。
  • rank(进程标识符):

    • rank 是分配给world每个进程的唯一标识符,用于标识每个进程在分布式训练中的角色。
    • local rank是分配个单个node每个进程的标识符,world中可能有多个node。
  • node(节点):

    • node 可以理解为一个服务器,代表着物理设备上的一个实体。
    • 在多机分布式训练中,每台机器被视为一个节点,节点之间需要进行通信。
    • 例如,如果有2 个node/server,每个 node/server/machine 各有4张卡(4 gpus)。total_world_size = 2(节点数) * 4(每个节点的 GPU 数量)= 8, rank 的取值范围为 [0, 1, 2, 3, 4, 5, 6, 7], local_rank 的取值范围为 [0, 1, 2, 3],[0, 1, 2, 3] 分别对应着不同的节点上的进程。
  • All to one:聚合过程(reduce),所有GPU(model和optiminizer状态)汇聚到参数服务器;

  • one to All:广播过程(broadcast),参数服务器广播到所有GPU;

torchrun

torchrun运行分布式train.py脚本,nproc-per-node设置每个node服务器上的gpu个数(一般是1个服务器)ddp_gpus_torchrun.py脚本名称,--max_epochs 5 --batch_size 32脚本参数。

!torchrun --nproc-per-node=2 ddp_gpus_torchrun.py --max_epochs 5 --batch_size 32

实现batch_size不变的情况下,对step的切分
(如单卡情况下,data_len=1024,batch_size=32,则一个gpu的step=1024/32=32
(多卡情况下2个gpu,data_len=1024,batch_size=32,则每个gpu的step=(1024/32)/2=32/2=16

step1:导入相关的包
import os
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoaderimport torch.multiprocessing as mp
from torch.utils.data.distributed import DistributedSampler  # 分发数据
from torch.nn.parallel import DistributedDataParallel as DDP  # 包装model使之数据并行
from torch.distributed import init_process_group, destroy_process_group
step2:ddp_setup函数

这个函数用于设置分布式训练的环境。它调用了init_process_group函数来初始化进程组,使用的通信backend后端是nccl(NVIDIA Collective Communication Library),然后使用torch.cuda.set_device函数,根据环境变量设置当前进程使用的GPU设备。

def ddp_setup():"""Args:rank: Unique identifier of each processworld_size: Total number of processes"""# rank 0 process
#     os.environ["MASTER_ADDR"] = "localhost"
#     os.environ["MASTER_PORT"] = "12355"# nccl:NVIDIA Collective Communication Library # 分布式情况下的,gpus 间通信init_process_group(backend="nccl")torch.cuda.set_device(int(os.environ['LOCAL_RANK']))
step3:Trainer类

这个类定义了一个模型训练的封装器。在初始化方法中,它接收一个模型backend、一个训练数据加载器train_dataloader、一个优化器train_dataloader作为参数,并将模型移动到GPU上,然后使用DistributedDataParallel对模型进行包装,以实现数据并行。(model先放cuda再DDP封装)

_run_batch方法实现了一次批量的训练过程,包括前向传播、计算损失、反向传播和更新参数。_run_epoch方法用于遍历整个训练集进行训练,self.train_dataloader.sampler.set_epoch(epoch)是用于设置数据加载器的epoch,以保证每个GPU在每个epoch开始时加载的数据都是不同的。train方法则用于控制训练的总体流程。

class Trainer:def __init__(self, model: torch.nn.Module, train_dataloader: DataLoader, optimizer: torch.optim.Optimizer, ) -> None:self.gpu_id = int(os.environ['LOCAL_RANK'])self.model = model.to(self.gpu_id)self.train_dataloader = train_dataloaderself.optimizer = optimizerself.model = DDP(model, device_ids=[self.gpu_id])def _run_batch(self, xs, ys):self.optimizer.zero_grad()output = self.model(xs)loss = F.cross_entropy(output, ys)loss.backward()self.optimizer.step()def _run_epoch(self, epoch):batch_size = len(next(iter(self.train_dataloader))[0])print(f'[GPU: {self.gpu_id}] Epoch: {epoch} | Batchsize: {batch_size} | Steps: {len(self.train_dataloader)}')self.train_dataloader.sampler.set_epoch(epoch)for xs, ys in self.train_dataloader:xs = xs.to(self.gpu_id)ys = ys.to(self.gpu_id)self._run_batch(xs, ys)def train(self, max_epoch: int):for epoch in range(max_epoch):self._run_epoch(epoch)
step4:MyTrainDataset类

这个类定义了一个自定义的训练数据集。在初始化方法中,它接收一个大小参数,并生成一组随机的数据样本。__len__方法返回数据集的大小,__getitem__方法用于获取指定索引处的数据样本。

class MyTrainDataset(Dataset):def __init__(self, size):self.size = sizeself.data = [(torch.rand(20), torch.rand(1)) for _ in range(size)]def __len__(self):return self.sizedef __getitem__(self, index):return self.data[index]
step5:main函数

这个函数是程序的主函数。在函数内部,首先调用了ddp_setup函数来设置分布式训练的环境。

然后创建了一个自定义的训练数据集和相应的数据加载器,以及一个线性模型和一个优化器。DistributedSampler是PyTorch提供的一个分布式采样器,用于确保每个进程加载的数据都是不同的且顺序随机。sampler对象被传入训练数据集的构造函数,可以通过数据加载器(如torch.utils.data.DataLoader)的sampler参数指定。在每个进程中,DistributedSampler会根据进程ID和进程数量,将整个训练数据集划分成多个部分,并为每个进程提供其应加载的数据索引。这样,在分布式训练过程中,每个进程只会加载自己负责的数据部分,避免了数据重复加载。

接下来,创建了一个Trainer对象,并调用其train方法进行模型训练。最后调用destroy_process_group函数销毁进程组。

def main(max_epochs: int, batch_size: int):ddp_setup()train_dataset = MyTrainDataset(2048)train_dataloader = DataLoader(train_dataset, batch_size=batch_size, pin_memory=True, shuffle=False, # batch input: split to each gpus (且没有任何 overlaping samples 各个 gpu 之间)sampler=DistributedSampler(train_dataset))model = torch.nn.Linear(20, 1)optimzer = torch.optim.SGD(model.parameters(), lr=1e-3)trainer = Trainer(model=model, optimizer=optimzer, train_dataloader=train_dataloader)trainer.train(max_epochs)destroy_process_group()
step6:解析命令行参数并运行主函数

在这个步骤中,首先使用argparse模块解析命令行参数,包括最大训练周期数max_epochs和批量大小batch_size。然后调用main函数,并将解析后的参数传递给它进行模型训练。

if __name__ == '__main__':import argparseparser = argparse.ArgumentParser(description='simple distributed training job')parser.add_argument('--max_epochs', type=int, help='Total epochs to train the model')parser.add_argument('--batch_size', default=32, type=int, help='Input batch size on each device (default: 32)')args = parser.parse_args()#    world_size = torch.cuda.device_count()main(args.max_epochs, args.batch_size)

3. 模型并行

  • 数据并行是切数据(scattering inputs and gathering outputs),模型并行是切模型(shards);
    • 模型并行单卡放不下一份模型;
    • 将一份大模型,不同的层切分到不同的卡上,forward时串行执行;

Huggingface实现

  • device_mapHuggingface支持自动实现模型并行
    • device_map参数的取值["auto", "balanced", "balanced_low_0", "sequential"]
    • auto的模型分割优先级:GPU(s) > CPU (RAM) > Disk

如下,如果有两种gpu,device_map="auto"使模型的layers的parameter分别加载到两张gpu上(各一半):

from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
model = LlamaForCausalLM.from_pretrained("decapoda-research/llama-7b-hf",load_in_8bit=True,device_map="auto",
)
for i, para in enumerate(model.named_parameters()):
#     print(f'{i}, {para[0]}\t {para[1].device} \t{para[1].dtype}')print(f'{i}, \t {para[1].device} \t{para[1].dtype}')`

to(device)实现

pytorch模拟模型并行原理:分别用to(device),将不同的层加载到不同的gpu上,forward时将parameter也加载到对应gpu。

import torch
import torch.nn as nn
import torch.optim as optimclass ToyModel(nn.Module):def __init__(self):super(ToyModel, self).__init__()self.net1 = torch.nn.Linear(10000, 10).to('cuda:0')self.relu = torch.nn.ReLU()self.net2 = torch.nn.Linear(10, 5).to('cuda:1')def forward(self, x):# 卡间串行执行x = self.net1(x.to('cuda:0')))x = self.net2(self.relu(x.to('cuda:1'))return x

进行一个batch的train:每个batch_size=20样本,5分类

model = ToyModel()
loss_fn = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001)optimizer.zero_grad()
outputs = model(torch.randn(20, 10000))
labels = torch.randn(20, 5).to('cuda:1')
loss_fn(outputs, labels).backward()
optimizer.step()

4. Deepspeed

DeepSpeed:炼丹小白居家旅行必备【神器】
在这里插入图片描述

技术栈
在这里插入图片描述

术语:其实和前面DDP的概念一样。

在这里插入图片描述

Train的数据4部分组成:model模型参数backward的梯度gradientoptimizer优化器参数forward的数据tensor
在这里插入图片描述

Deepspeed、ZeRO技术方案分发Partitioning(按gpu数量N等分数据)、卸载Offload(不用的数据放入CPU)、模型并行Pipeline(模型参数按层切分到不同gpu上)
在这里插入图片描述

step1:deepspeed初始化

# init distributed
deepspeed.init_distributed()

加载参数local_rank

def parse_arguments():import argparseparser = argparse.ArgumentParser(description='deepspeed training script.')parser.add_argument('--local_rank', type=int, default=-1,help='local rank passed from distributed launcher')# Include DeepSpeed configuration argumentsparser = deepspeed.add_config_arguments(parser)args = parser.parse_args()return args

step2:deepspeed封装模型和数据集

deepspeed.initialize()封装model和dataset,相当于将模型和数据集交给deepspeed进行托管,engine就是deepspeed封装后的model,其他返回值同样都是deepspeed封装过的。(其中optimizer和lr_scheduler 后面是用不到的),我们只需要模型engine数据加载器training_dataloader

还要传入一个deepspeed的配置文件deepspeed_config

# init model
model = MyClassifier(3, 100, ch_multi=128)
# init dataset
ds = MyDataset((3, 512, 512), 100, sample_count=int(1e6))# init engine
engine, optimizer, training_dataloader, lr_scheduler = deepspeed.initialize(args=args,model=model,model_parameters=model.parameters(),training_data=ds,config=deepspeed_config,
)
# load checkpoint
engine.load_checkpoint("./data/checkpoints/MyClassifier/")

step3:训练

在使用DeepSpeed进行分布式训练时,通常不需要手动调用optimizer.zero_grad()来清零梯度。DeepSpeed会自动处理梯度累积和梯度清零的操作,无需手动调用zero_grad()。

当使用DeepSpeed进行分布式训练时,一般会在engine.backward(loss)之后调用engine.step()来执行梯度更新操作。在engine.step()中,DeepSpeed会执行优化器的step()方法来更新模型参数,并在必要的时候自动清零梯度,以便进行下一轮的反向传播。

engine.train()for step, (data, label) in enumerate(training_dataloader):step += 1data= data.to(device=engine.device, dtype=torch.float16)  # xlabel = label.to(device=engine.device, dtype=torch.long).reshape(-1)  # y# 不需要梯度清零optimizer.zero_grad()outputs = engine(data)  # forwardloss = F.cross_entropy(outputs, label )engine.backward(loss)engine.step()

单机节点node多卡gpu运行

deepspeed \--launcher_args "source ${PWD}/setup_env.sh" \--hostfile hostfile \deepspeed_script.py \--deepspeed \--deepspeed_config "$PWD/deepspeed_config.json"

deepspeed_config.json

{"train_micro_batch_size_per_gpu": 1,"gradient_accumulation_steps": 1,"optimizer": {"type": "Adam","params": {"lr": 0.001,"betas": [0.8,0.999],"eps": 1e-08,"weight_decay": 3e-07}},"scheduler": {"type": "WarmupLR","params": {"warmup_min_lr": 0,"warmup_max_lr": 0.001,"warmup_num_steps": 1000}},"activation_checkpointing": {"partition_activations": true,"cpu_checkpointing": true,"contiguous_memory_optimization": false,"number_checkpoints": null,"synchronize_checkpoint_boundary": false,"profile": true},"fp16": {"enabled": true,"auto_cast": false,"loss_scale": 0,"initial_scale_power": 16,"loss_scale_window": 1000,"hysteresis": 2,"consecutive_hysteresis": false,"min_loss_scale": 1},"zero_optimization": {"stage": 3,"offload_param": {"device": "cpu","pin_memory": true},"offload_optimizer": {"device": "cpu","pin_memory": true},"contiguous_gradients": true,"overlap_comm": true}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/93654.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

spark SQL 任务参数调优1

1.背景 要了解spark参数调优,首先需要清楚一部分背景资料Spark SQL的执行原理,方便理解各种参数对任务的具体影响。 一条SQL语句生成执行引擎可识别的程序,解析(Parser)、优化(Optimizer)、执行…

RabbitMQ核心总结

AMQP协议核心概念 RabbitMQ是基于AMQP协议的,通过使用通用协议就可以做到在不同语言之间传递。 server:又称broker,接受客户端连接,实现AMQP实体服务。 connection:连接和具体broker网络连接。 channel&#xff1a…

堆栈与堆(Stack vs Heap)有什么区别?

​编写有效的代码需要了解堆栈和堆内存,这使其成为学习编程的重要组成部分。不仅如此,新程序员或职场老手都应该完全熟悉堆栈内存和堆内存之间的区别,以便编写有效且优化的代码。 这篇博文将对这两种内存分配技术进行全面的比较。通过本文的…

网络协议--链路层

2.1 引言 从图1-4中可以看出,在TCP/IP协议族中,链路层主要有三个目的: (1)为IP模块发送和接收IP数据报; (2)为ARP模块发送ARP请求和接收ARP应答; (3&#xf…

Linux文件系统及命令 | 实用操作指令汇总

目录 ctrl c 强制停止与ctrl d 退出或登出 history:历史命令搜索 clear:清屏 ln命令:创建软硬连接 cat命令:显示文件命令 less命令:查看大文件 grep命令:正则表达式使用 sort命令:排序 uniq命令…

JSON的MIME媒体类型是application/json

JSON(全称 JavaScript Object Notation)即JavaScript对象表示法,通知使用application/json媒体类型。 目录 1、JSON介绍 2、JSON语法 3、实践总结 运行环境: Windows-7-Ultimate-x64、Windows-10-BusinessEditions-21h2-x64 1…

区块链实验室(27) - 区块链+物联网应用案例

分享最新的区块链物联网应用案例:HPCLS-BC

【Kafka专题】Kafka快速实战以及基本原理详解

目录 前言课程内容一、Kafka介绍1.1 MQ的作用1.2 为什么用Kafka 二、Kafka快速上手2.1 实验环境2.2 单机服务体验2.3 认识Kafka模型架构2.4 Kafka集群2.5 理解服务端的Topic、Partion和Broker2.6 章节总结:Kafka集群的整体结构 三、Kraft集群(拓展&#…

集群-Nacos-2.2.3、Nginx-1.24.0集群配置

Nacos集群 高可用 Nginx 集群Nacos 集群(至少三个实例)高可用数据库集群(取代 Nacos 内嵌数据库) Nacos 集群搭建 集群使用版本: Nginx 1.24.0 Nacos 2.2.3 服务器IP服务器版本Nginx18.18.18.40CentOS-7.9MySQL18.18.…

样品运输与贮存

声明 本文是学习GB-T 42959-2023 饲料微生物检验 采样. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本文件规定了以微生物检验为目的的采样原则、采样人员、设备和材料、采样方案、采样步骤和采样 报告。 本文件适用于以微生物检验为目的…

flutter开发实战-webview插件flutter_inappwebview使用

flutter开发实战-webview插件flutter_inappwebview使用 在开发过程中,经常遇到需要使用WebView,Webview需要调用原生的插件来实现。常见的flutter的webview插件是webview_flutter,flutter_inappwebview。之前整理了一下webview_flutter&…

手机投屏到笔记本电脑小方法

1、我们可以开启Windows自带的投影功能,将我们的手机和电脑连接同一个无线网络。 2、在电脑开始菜单栏里找到设置选项并打开。 3、我们进入之后找到系统选项,点击进去之后找到点击投影到这台电脑,接下来我们将默认的始终关闭的下拉选项更改为…

国庆作业6

TCP服务器 #include "head.h" #define PORT 2580 //端口号 #define IP "192.168.31.219" //本机IP int main(int argc, const char *argv[]) {sqlite3* dbNULL;if(sqlite3_open("./my.db",&db)!SQLITE_OK){fprintf(stde…

匿名上位机V7波形显示教程-简单能用

匿名上位机V7波形显示教程-简单能用 匿名上位机V7下位机数据格式根据匿名上位机V7的手册说明文档,编写对应的指令在主函数中初始化ANDmessage驱动连接匿名上位机V7 匿名上位机V7下位机数据格式 DATA区域内容: 举例说明DATA区域格式,例如上文&…

【数组及指针经典笔试题解析】

1.数组和指针笔试题 题目1 int main(){int a[5] { 1,2,3,4,5};int * ptr (int * )(&a 1);printf("%d,%d",*(a 1),*(ptr - 1));return 0;}图文解析: int * ptr …

数据结构与算法——19.红黑树

这篇文章我们来讲一下红黑树。 目录 1.概述 1.1红黑树的性质 2.红黑树的实现 3.总结 1.概述 首先,我们来大致了解一下什么是红黑树 红黑树是一种自平衡的二叉查找树,是一种高效的查找树。红黑树具有良好的效率,它可在 O(logN) 时间内完…

解决u盘在我的电脑中重复显示两个

删除注册表: [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Desktop\NameSpace\DelegateFolders\{F5FB2C77-0E2F-4A16-A381-3E560C68BC83}]

Maven下载源码出现:Cannot download sources Sources not found for org.springframwork...

Maven下载源码出现:Cannot download sources Sources not found for org.springframwork… 最近重装了IDEA再次查看源码时发现总是报错,网上找了很多,发现解决方法都是在项目终端执行如下命令: mvn dependency:resolve -Dclassi…

基于MFC和OpenCV实现人脸识别

基于MFC和OpenCV实现人脸识别 文章目录 基于MFC和OpenCV实现人脸识别1. 项目说明1. 创建项目2. 启动窗口3. 登录窗口-添加窗口、从启动窗口跳转4. 启动窗口-美化按钮5. 登录窗口-美化按钮、雪花视频6. 注册窗口-美化按钮、雪花视频、从启动窗口跳转7. 注册窗口-开启摄像头8. 注…

PE文件之导入表

1. 导入表 2. 显示导入表信息的例子 ; 作用: 将RVA地址转成FOA即文件偏移 ; 参数: _pFileHdr 指向读到内存中文件的基址指针 ; _dwRVA 目标RVA地址 ; 返回: 目标RVA转成文件偏移的值 RVA2FOA PROC USES esi edi edx, _pFileHdr:PTR BYTE, _dwRVA:DWORDmov esi, _pFil…