面试常用排序查找算法

文章目录

      • 1 二分查找
      • 2 冒泡排序
      • 3 堆排序
      • 4 插入排序
      • 5 快速排序
      • 6 选择排序
      • 7 希尔排序

1 二分查找

  1. 定义两个变量leftright,分别表示数组的左边界和右边界,初始值分别为0len - 1,其中len是数组的长度。
  2. 计算数组的中间位置mid,公式为(left + right) / 2,并判断数组中该位置的元素num[mid]是否等于目标值target
  3. 如果相等,说明找到了目标值,返回mid作为结果。
  4. 如果不相等,比较num[mid]target的大小,如果num[mid] < target,说明目标值在数组的右半部分,因此将左边界更新为mid + 1;如果num[mid] > target,说明目标值在数组的左半部分,因此将右边界更新为mid - 1
  5. 重复步骤2到4,直到左边界大于右边界,这时说明数组中不存在目标值,返回-1作为结果。

  二分查找算法的优点是查找速度快,时间复杂度为 O ( l o g n ) O(logn) O(logn),其中n是数组的长度。缺点是要求数组必须是有序的,并且对于动态变化的数组不适用。

int BinarySearch(int num[],int target,int len)
{int left = 0, right = len - 1;while(left <= right){int mid = (left + right) / 2;if(num[mid]==target){return mid;}else if(num[mid] < target){left = mid + 1;}else{right = mid - 1;}}return -1;
}

2 冒泡排序

  1. 定义一个变量i,表示数组中未排序的部分的最后一个元素的位置,初始值为length - 1,其中length是数组的长度。
  2. 从数组的第一个元素开始,依次比较相邻的两个元素,如果前一个元素num[j]大于后一个元素num[j+1],则交换它们的位置,这样可以将较大的元素向后移动。
  3. 重复步骤2,直到遍历到数组中未排序部分的最后一个元素,这时可以确定该元素是数组中最大的元素,并将其排在正确的位置。
  4. 将变量i减一,表示数组中未排序部分的长度减少了一个元素,然后回到步骤2,继续进行比较和交换。
  5. 重复步骤2到4,直到变量i小于等于1,这时说明数组中所有的元素都已经排好序,算法结束。

  冒泡排序算法的优点是简单易懂,不需要额外的空间。缺点是效率低,时间复杂度为 O ( n 2 ) O(n^2) O(n2),其中n是数组的长度。

void BubbleSort(int num[],int length)
{for(int i=length-1;i>1;i--){for(int j=0;j<i;j++){if(num[j] > num[j+1]){int tmp = num[j+1];num[j+1] = num[j];num[j] = tmp;}}}
}

3 堆排序

  1. 定义一个函数MaxHeap,它的作用是将一个数组中的一部分元素调整为一个大根堆,即满足父节点的值大于等于子节点的值的二叉树。函数的参数有三个,分别是num表示数组,start表示调整的起始位置,end表示调整的结束位置。
  2. 在函数MaxHeap中,定义两个变量dadson,分别表示当前要调整的父节点和子节点的位置,初始值分别为startstart * 2 + 1(因为数组下标从0开始,所以左子节点是父节点乘以2再加1)。
  3. 判断子节点是否在调整范围内,如果是,则继续执行以下步骤;如果不是,则说明已经调整完毕,返回。
  4. 如果存在右子节点,并且右子节点的值大于左子节点的值,则将子节点更新为右子节点(即选择较大的子节点)。
  5. 比较父节点和子节点的值,如果父节点的值大于等于子节点的值,则说明已经满足大根堆的性质,返回;如果不是,则交换父节点和子节点的值,并将父节点更新为原来的子节点,子节点更新为原来父节点的左子节点(即向下一层继续调整)。
  6. 重复步骤3到5,直到调整完毕或者返回。
  7. 定义一个函数HeapSort,它的作用是对一个数组进行堆排序。函数的参数有两个,分别是num表示数组,len表示数组的长度。
  8. 从数组中间位置开始,依次对每个元素执行函数MaxHeap,这样可以将整个数组调整为一个大根堆(即第一个元素是最大的元素)。
  9. 从数组最后一个元素开始,依次执行以下步骤:
    • 交换第一个元素和当前元素的值,这样可以将最大的元素放在正确的位置。
    • 对除了当前元素之外的其他元素执行函数MaxHeap,这样可以将剩余部分重新调整为一个大根堆(即第一个元素是剩余部分最大的元素)。
  10. 重复步骤9,直到只剩下第一个元素,这时说明数组中所有的元素都已经排好序,算法结束。

  堆排序算法的优点是效率高,时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),其中n是数组的长度。缺点是需要额外的空间来存储堆结构,并且对于稳定性要求高的场合不适用。

void MaxHeap(int num[],int start,int end)
{int dad = start;int son = dad * 2 + 1;while(son <=end){if((son+1<=end) && (num[son]<num[son+1])){son++;}if(num[son]<num[dad]){return;}else{int tmp = num[dad];num[dad] = num[son];num[son] = tmp;dad = son;son = dad * 2 + 1;}}
}void HeapSort(int num[],int len)
{for(int i=len/2-1;i>=0;i--){MaxHeap(num,i,len-1);}for(int i=len-1;i>0;i--){int tmp = num[0];num[0] = num[i];num[i] = tmp;MaxHeap(num,0,i-1);}
}

4 插入排序

  1. 定义一个变量i,表示当前要插入的元素的位置,初始值为1,表示从数组的第二个元素开始。
  2. 将当前要插入的元素num[i]保存在一个临时变量tmp中,以免被覆盖。
  3. 定义一个变量j,表示已经排好序的部分的最后一个元素的位置,初始值为i - 1
  4. 比较已经排好序的部分的最后一个元素num[j]和要插入的元素tmp的大小,如果前者大于后者,则将前者向后移动一位,即将num[j]赋值给num[j+1],并将j减一;如果不是,则说明找到了要插入的位置,跳出循环。
  5. 将要插入的元素tmp赋值给找到的位置,即将tmp赋值给num[j+1]
  6. 将变量i加一,表示要插入下一个元素,并回到步骤2,继续进行比较和移动。
  7. 重复步骤2到6,直到变量i等于数组的长度,这时说明数组中所有的元素都已经排好序,算法结束。

  插入排序算法的优点是简单易懂,对于部分有序或者数据量较小的数组效率较高。缺点是效率低,时间复杂度为 O ( n 2 ) O(n^2) O(n2),其中n是数组的长度。

void InsertSort(int num[],int length)
{for(int i=1;i<length;i++){int tmp = num[i];int j = i - 1;while((j>=0) && (num[j]>tmp)){num[j+1] = num[j];j--;}num[j+1] = tmp;}
}

5 快速排序

  1. 定义一个函数QuickSort,它的作用是对一个数组的一部分进行快速排序。函数的参数有三个,分别是num表示数组,start表示排序的起始位置,end表示排序的结束位置。
  2. 判断是否需要排序,如果起始位置大于等于结束位置,则说明已经排好序,返回;如果不是,则继续执行以下步骤。
  3. 定义两个变量ij,分别表示当前要划分的部分的左边界和右边界,初始值分别为startend
  4. 选择数组中第一个元素num[i]作为基准值,并将其保存在一个临时变量basenum中,以免被覆盖。
  5. 从右边界开始,向左寻找一个小于基准值的元素,如果找到,则将其赋值给左边界位置;如果没有找到,则将右边界减一,继续寻找。
  6. 从左边界开始,向右寻找一个大于基准值的元素,如果找到,则将其赋值给右边界位置;如果没有找到,则将左边界加一,继续寻找。
  7. 重复步骤5和6,直到左边界和右边界相遇或者交叉,这时说明已经完成了一次划分,并将基准值赋值给相遇或者交叉的位置。
  8. 对基准值左边的部分递归地执行函数QuickSort,对基准值右边的部分递归地执行函数QuickSort
  9. 重复步骤2到8,直到所有的部分都排好序,算法结束。

  快速排序算法的优点是效率高,时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),其中n是数组的长度。缺点是不稳定,并且对于极端情况(如数组已经有序或者逆序)效率低。

void QuickSort(int num[],int start,int end)
{if(start >= end) return;int i = start;int j = end;int basenum = num[i];while(i<j){//从右往左找小值while((i<j) && (num[j]>=basenum)){j--;}if(i<j){num[i] = num[j];i++;}//从左往右找大值while((i<j) && (num[i]<basenum)){i++;}if(i<j){num[j] = num[i];j--;}num[i] = basenum;}QuickSort(num,start,i-1);QuickSort(num,i+1,end);
}

6 选择排序

  1. 定义一个变量i,表示当前要选择的位置,初始值为0,表示从数组的第一个元素开始。
  2. 定义一个变量min,表示当前最小元素的位置,初始值为i
  3. 从当前位置开始,向后遍历数组中的每个元素,如果发现有比当前最小元素更小的元素,则将其位置赋值给min,这样可以找到当前范围内最小的元素。
  4. 交换当前位置和最小元素的值,即将num[min]赋值给num[i],将num[i]赋值给num[min],这样可以将最小的元素放在正确的位置。
  5. 将变量i加一,表示要选择下一个位置,并回到步骤2,继续进行选择和交换。
  6. 重复步骤2到5,直到变量i等于数组的长度减一,这时说明数组中所有的元素都已经排好序,算法结束。

  选择排序算法的优点是简单易懂,不需要额外的空间。缺点是效率低,时间复杂度为 O ( n 2 ) O(n^2) O(n2),其中n是数组的长度。

void SelectSort(int num[],int length)
{for(int i=0;i<length-1;i++){int min = i;for(int j=i;j<length;j++){if(num[j]<num[min]){min = j;}}int tmp = num[min];num[min] = num[i];num[i] = tmp;}
}

7 希尔排序

  1. 定义一个变量gap,表示当前要排序的元素的间隔,初始值为数组的长度length
  2. 计算新的间隔,公式为gap = gap / 3 + 1,这样可以逐渐减小间隔,直到为1。
  3. 对每个间隔进行以下步骤:
    • 定义一个变量i,表示当前要排序的间隔的起始位置,初始值为0
    • 从当前位置开始,向后遍历数组中的每个间隔内的元素,如果发现有比前一个间隔内的元素更小的元素,则将其保存在一个临时变量tmp中,并执行以下步骤:
      • 定义一个变量k,表示已经排好序的部分的最后一个间隔内的元素的位置,初始值为当前位置减去间隔,即k = j - gap
      • 比较已经排好序的部分的最后一个间隔内的元素num[k]和要插入的元素tmp的大小,如果前者大于后者,则将前者向后移动一个间隔,即将num[k]赋值给num[k+gap],并将k减去间隔,继续比较;如果不是,则说明找到了要插入的位置,跳出循环。
      • 将要插入的元素tmp赋值给找到的位置,即将tmp赋值给num[k+gap]
    • 将变量i加一,表示要排序下一个间隔,并回到步骤3.2,继续进行遍历和插入。
  4. 重复步骤2和3,直到变量gap等于1,这时说明数组中所有的元素都已经排好序,算法结束。

  希尔排序算法的优点是效率高于简单插入排序,时间复杂度为 O ( n 1.3 ) O(n^{1.3}) O(n1.3),其中n是数组的长度。缺点是不稳定,并且对于不同的间隔选择效率有影响。

void ShellSort(int num[],int length)
{int gap = length;do{gap = gap / 3 + 1;for(int i=0;i<gap;i++){for(int j=gap+i;j<length;j+=gap){if(num[j] < num[j-gap]){int tmp = num[j];int k;for(k=j-gap;(k>=0) && (num[k]>tmp);k-=gap){num[k+gap] = num[k];}num[k+gap] = tmp;}}}} while(gap>1);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/93362.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[Linux] 5.Linux虚拟机和Windows文件共享

一、拖拽 如果安装了VMware Tool可以从Windows直接拖进Linux中共享文件&#xff0c;通过拖拽的方式可以把文件从Linux 传输到Windows 二、 文件共享 需要安装VMware Tool点击添加&#xff0c;选择Windows文件的路径&#xff0c;名称作为Linux访问的路径 cd什么都不加&#xff…

<C++> STL_bitset使用和模拟实现

bitset的介绍 位图的引入 给40亿个不重复的无符号整数&#xff0c;没排过序。给一个无符号整数&#xff0c;如何快速判断一个数是否在这40亿个数中&#xff1f; 要判断一个数是否在某一堆数中&#xff0c;我们可能会想到如下方法&#xff1a; 将这一堆数进行排序&#xff0…

【python海洋专题九】Cartopy画地形等深线图

【python海洋专题九】Cartopy画地形等深线图 水深图基础差不多了&#xff0c;可以换成温度、盐度等 本期加上等深线 本期内容 1&#xff1a;地形等深线 cf ax.contour(lon, lat, ele[:, :], levelsnp.linspace(-9000,-100,10),colorsgray, linestyles-,linewidths0.25, t…

聊聊HttpComponentsHttpInvokerRequestExecutor

序 本文主要研究一下HttpComponentsHttpInvokerRequestExecutor HttpComponentsHttpInvokerRequestExecutor org/springframework/remoting/httpinvoker/HttpComponentsHttpInvokerRequestExecutor.java public class HttpComponentsHttpInvokerRequestExecutor extends Ab…

【Qt图形视图框架】自定义QGraphicsItem和QGraphicsView,实现鼠标(移动、缩放)及键盘事件、右键事件

自定义QGraphicsItem和QGraphicsView 说明示例myitem.hmyitem.cppmyview.hmyview.cpp调用main.cpp 效果 说明 在使用Qt的图形视图框架实现功能时&#xff0c;一般会在其基础上进行自定义功能实现。 如&#xff1a;滚轮对场景的缩放&#xff0c;鼠标拖动场景中的项&#xff0c;…

用python表格初级尝试

Excel&#xff0c;我的野心 当我输入3,2 就表示在第3行第2列。的单元格输入数据input输入表头 &#xff08;input内除了/&#xff0c;空格 回车 标点符号等 全部作为单元格分隔符&#xff09;由我设置input输入的是行or列 给选项 1. 行 2. 列默认回车或没输入值是列由我设置起…

数据结构 B树 B+树 B*树 特性与规则说明 图解

文章目录 前言B树基本规则B树的数据插入&#xff08;文字描述图解&#xff09;B树数据查找B树效率分析B树的作用B树基本规则B树 与 B树对比B*树基本规则B*树 与 B树对比拓展 前言 B树基本规则 每个节点最多有m个子节点&#xff0c;其中m是一个正整数。根节点除外&#xff0c;其…

云原生Kubernetes:K8S集群各组件服务重启

目录 一、理论 1.各组件服务重启命令 一、理论 1.各组件服务重启命令 &#xff08;1&#xff09;Master节点Node节点共同服务 systemctl restart etcd systemctl daemon-reload systemctl enable flanneld systemctl restart flanneld &#xff08;2&#xff09;Master节…

聊聊并发编程——线程池

目录 Java线程池 处理流程 线程池主要参数 常见的拒绝策略 execute和submit区别 关闭线程池 常见的线程池 newSingleThreadExecutor newFixedThreadPool newCachedThreadPool newScheduledThreadPool 线程池的状态 Java线程池 运用场景最多的并发框架&#xff0c;…

阿里巴巴K8S集成seata

正文 在K8S集成seata&#xff0c;官方配置 代码 apiVersion: v1 kind: Service metadata:name: seata-servernamespace: wmz-devlabels:k8s-app: seata-server spec:type: NodePortports:- port: 8091nodePort: 30091protocol: TCPname: httpselector:k8s-app: seata-server-…

Java练习题-键盘录入字符串实现大小写转换

✅作者简介&#xff1a;CSDN内容合伙人、阿里云专家博主、51CTO专家博主、新星计划第三季python赛道Top1&#x1f3c6; &#x1f4c3;个人主页&#xff1a;hacker707的csdn博客 &#x1f525;系列专栏&#xff1a;Java练习题 &#x1f4ac;个人格言&#xff1a;不断的翻越一座又…

idea清空缓存类

解决办法 网上有很多是让你去清空什么maven依赖&#xff0c;但假如这个项目是你不可以大刀阔斧的话 可以清空idea缓存 选择 Invalidate 开头的 然后全选 运行重启idea OK

Linux系统编程系列之线程

一、什么是线程 线程&#xff08;Thread&#xff09;是计算机中的基本执行单元&#xff0c;是操作系统调度的最小单位。线程是进程内的一个独立执行流程&#xff0c;一个进程可以包含多个线程&#xff0c;这些线程共享进程的资源&#xff0c;但每个线程都有自己的独立栈空间以及…

Java后端模拟面试,题集①

1.Spring bean的生命周期 实例化 Instantiation属性赋值 Populate初始化 Initialization销毁 Destruction 2.Spring AOP的创建在bean的哪个时期进行的 &#xff08;图片转载自Spring Bean的完整生命周期&#xff08;带流程图&#xff0c;好记&#xff09;&#xff09; 3.MQ如…

基于SSM的选课排课系统

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用Vue技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

Java 文档注释

Java 文档注释 目录 Java 文档注释 javadoc 标签 文档注释 javadoc输出什么 实例 Java只是三种注释方式。前两种分别是// 和/* */&#xff0c;第三种被称作说明注释&#xff0c;它以/** 开始&#xff0c;以 */结束。 说明注释允许你在程序中嵌入关于程序的信息。你可以使…

2023年中国奶牛平均单产量、奶类产量及发展趋势分析:液态奶市场向高端化发展[图]

2022年&#xff0c;我国奶产业素质稳步提升&#xff0c;全国存栏百头以上规模养殖比例达到72%&#xff0c;同比提高2个百分点。奶牛平均单产9.2吨&#xff0c;较2021年增加500千克&#xff1b;规模牧场95%以上配备全混合日粮搅拌车&#xff0c;原料奶生产100%实现机械化挤奶&am…

3D WEB轻量化引擎HOOPS助力3D测量应用蓬勃发展:效率、精度显著提升

在3D开发工具领域&#xff0c;Tech Soft 3D打造的HOOPS SDK已经崭露头角&#xff0c;成为了全球领先的3D领域开发工具提供商。HOOPS SDK包括四种不同的3D软件开发工具&#xff0c;已成为行业的翘楚。 其中&#xff0c;HOOPS Exchange以其CAD数据转换的能力脱颖而出&#xff0c…

Linux回收内存的时候遇到PageWriteback和PageDirty脏页怎么处理?

概述 我们知道内存回收会遇到各种情况的page,比如正在回写的page(PageWriteback)和脏页(PageDirty)的page,内核会等待PageWriteback完成回写呢,还是说直接跳过正在回写的页面。这两种选择各有优劣,如果等待Writeback完成会影响内存分配性能;如果直接跳过呢可能影响内存…

如何破解压缩包zip解压密码?

Zip压缩包设置了密码&#xff0c;解压的时候就需要输入正确对密码才能顺利解压出文件&#xff0c;正常当我们解压文件或者删除密码的时候&#xff0c;虽然方法多&#xff0c;但是都需要输入正确的密码才能完成。忘记密码就无法进行操作。 那么&#xff0c;忘记了zip压缩包的密…