傅里叶系列 P1 的定价选项

  • 如果您想了解更多信息,请查看第 2 部分和第 3 部分。

一、说明

        这是第一篇文章,我将帮助您获得如何使用这个新的强大工具来解决金融中的半分析问题并取代您的蒙特卡洛方法的直觉。

        我们都知道并喜欢蒙特卡洛数字积分方法,但是如果我告诉你你可以用虚数和傅里叶级数来代替蒙特卡洛呢?
        主要好处是速度,这在期权定价中非常重要。这非常重要,因为用于定价股票期权的赫斯顿模型需要数字积分,蒙特卡罗大约需要 100 毫秒,傅里叶级数需要几毫秒。

二、第 1 部分:但是什么是傅里叶级数?

        对于任何函数 f 和区间 a,b,我们可以将 f(x) 近似为余弦和正弦的无限和,L = b-a

三、第 2 部分:将数学公式应用于 Python


def get_fourier_approx(f, x:np.array, a:float, b:float, N:int):fa = lambda x, n : f(x) * cos((2*pi*n*x)/(b - a))fb = lambda x, n : f(x) * sin((2*pi*n*x)/(b - a))A0 = 1/(b - a) * quad(f, a, b, limit=200)[0]Cosine_Sine_Sum = np.zeros_like(x)for n in range(1, N+1):A = 2/(b - a) * quad(fa, a, b, args=(n), limit=200)[0]B = 2/(b - a) * quad(fb, a, b, args=(n), limit=200)[0]Cosine_Sine_Sum += A*cos((2*pi*n*x)/(b - a)) + B*sin((2*pi*n*x)/(b - a))fx = A0 + Cosine_Sine_Sumreturn fx
a = -6
b = 6
x = np.linspace(a, b, 1_000)
y = f(x)fig, (ax1, ax2) = plt.subplots(2, figsize=(20,12))
blue_shades = ['#0000FF', '#3399FF', '#66B2FF', '#99CCFF', '#CCE5FF']avg_residuals = []
Ns = [8, 16, 32, 64, 128]
for i, N in enumerate(Ns):fx = get_fourier_approx(f=f, x=x, a=a, b=b, N=N)ax1.plot(x,fx, blue_shades[i], label=f'N = {N}')ax2.plot(x,y-fx, blue_shades[i], label=f'N = {N}')avg_residuals.append(np.abs(y-fx).mean())ax1.set_title('Fourier Transform of f(x)')
ax1.plot(x,y,'tab:red', linestyle='--')
ax2.set_title('Residuals')
plt.tight_layout() ; ax1.legend();ax2.legend() ; plt.show()pd.Series(avg_residuals, index=Ns, name='Avg Residual')

3.1 方形功能:

来源:笔记本

N      Avg. Residual
--------------------
8      1.311711
16     0.784683
32     0.440387
64     0.268449
128    0.154604

3.2 线路功能:

来源:笔记本

N      Avg. Residual
--------------------
8      0.447389
16     0.264635
32     0.153540
64     0.088745
128    0.052147

3.3 正态分布

  • 在 [0, 12] 中缩放 y,其中:
    - 平均值 = 100- 标准 = 0.1 *sqrt(5)*100- a = 100 -12 * 标准
    - b = 100

    +12 * 标准

来源:笔记本

N      Avg. Residual
--------------------
8      1.092374e-01
16     8.326020e-05
32     6.878539e-14
64     5.721031e-14
128    5.170898e-14

3.3 议论

  1. 所有分布都按比例缩放,使 y 范围从 [0,12] 开始,因此我们可以比较残差的大小。
  2. 从绘图和残差可以看出,函数的曲线越大,傅里叶级数收敛到正确值的速度就越快。我们将此属性用作正态,并且对数正态不需要很多项来计算,在我们的近似中具有足够的准确性。
  3. 数据开头和结尾的误差明显更高。因此,最好包含比预期使用的限制更高的限制。例如,当您需要 ±4 时计算 ±3std。这使得深度价外期权更难计算。

四、第3部分  S(T)的对数正态分布

        S_T遵循 Q 下的简单 GBM,我们可以使用以下等式推导出S_T的概率密度:

        现在我们可以使用以下函数在 Python 中定义 f(S_T),并将下限定义为 ( 0, S_0*exp(r*T) + 12 * sigma*sqrt(T)*S_0 )

S0      = 100
r       = 0.05
sigma   = 0.1
T       = 5.0Z = lambda St : np.where(St > 0, ((log(St/S0) - (r - .5*sigma)*T)/(sqrt(T)*sigma)), -np.inf)
f = lambda x : norm.pdf(Z(x))a   = S0*exp(r*T) - 12 * sigma*sqrt(T)*S0
b   = S0*exp(r*T) + 12 * sigma*sqrt(T)*S0

Source: Notebook

N       Avg. (scaled) Residual      Avg. Residual       Execution Time (sec)
----------------------------------------------------------------------------
8       0.176429                    5.880975e-03        0.112720
16      0.004235                    1.411566e-04        0.246473
32      0.000030                    9.855127e-07        0.624209
64      0.000027                    8.918504e-07        1.936948
128     0.000026                    8.530034e-07        6.741019

4.1 言论:

  1. 我包括了缩放和非缩放残差。缩放残差对应于(不正确的)缩放概率,使得 max{y}=12,其中(正确的)非缩放,max{y}=0.4。这样做是为了将对数正态分布的拟合与上面绘制的其他函数进行比较。
  2. 我们可以推断出,由于形状不对称,对数正态分布比正态分布更难拟合。
  3. 我们可以看到,在非缩放版本中有 64 项,计算 P(S_T=x) 的预期误差非常小,小于 0.0001%。
  4. 分布集中在 T 处的期望值周围非常重要,12stds 左右对称。 我做了一个版本,其中a和b不对称,残差不均匀分布。直觉上,你会采取 a=0+,但它不会产生理想的结果。*S_T残差是针对 S_T>0 的值计算的,因为这是不可能的,我们不关心小于 0 的值。

a=1e-8 的S_T密度,在残差处表现出不良性质。来源:笔记本

4.2 限制 — 缺点 — 改进:

  1. 将前面提到的任何函数近似为傅里叶级数并使用数值积分作为计算 An 和 Bn 的手段没有任何好处。
  2. 分析计算 An 和 Bn 系数非常重要,因此唯一的数值部分是计算序列。
  3. 好处在别处。当f(x)没有显式形式并且需要数值积分时,我们可以用特征函数和傅里叶级数半解析地解决问题。
  4. 如果我们在 Python 中使用 scipy.norm 为带有标准 BS 的选项定价,大约需要 0.06 毫秒。
    但是,如果我们解析求解积分 A0、An、Bn 并使用复数版本,我们会得到大约 0.6 毫秒,这是可比的。我们将在第 3 部分中在 Heston 模型中使用它,该模型是此类期权定价的行业标准。

下一篇:第 2 部分

媒介:链接

在下一篇文章中,我们将了解如何将这些知识与特征函数(虚数的使用)结合使用,以使用标准布莱克-斯科尔斯模型计算欧洲看涨期权的值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/93328.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器人中的数值优化(二十)——函数的光滑化技巧

本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,…

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石②

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石② 第十九章 驱动程序基石②19.3 异步通知19.3.1 适用场景19.3.2 使用流程19.3.3 驱动编程19.3.4 应用编程19.3.5 现场编程19.3.6 上机编程19.3.7 异步通知机制内核代码详解 19.4 阻塞与非阻塞19.4.1 应用编程19.4.2 驱动编程…

Unity HDRP Custom Pass 实现场景雪地效果

先使用Shader Graph连一个使用模型法线添加雪地的shader,并赋给一个material。 1.1 先拿到模型世界坐标下的顶点法线,简单处理一下,赋给透明度即可。 给场景添加Custom Pass,剔除不需要的层级。 1.在Hierarchy界面中&#xff…

用于自然语言处理的 Python:理解文本数据

一、说明 Python是一种功能强大的编程语言,在自然语言处理(NLP)领域获得了极大的普及。凭借其丰富的库集,Python 为处理和分析文本数据提供了一个全面的生态系统。在本文中,我们将介绍 Python for NLP 的一些基础知识&…

SSM - Springboot - MyBatis-Plus 全栈体系(十六)

第三章 MyBatis 三、MyBatis 多表映射 2. 对一映射 2.1 需求说明 根据 ID 查询订单,以及订单关联的用户的信息! 2.2 OrderMapper 接口 public interface OrderMapper {Order selectOrderWithCustomer(Integer orderId); }2.3 OrderMapper.xml 配置…

讲讲项目里的仪表盘编辑器(三)布局组件

布局容器处理 看完前面两章的讲解,我们对仪表盘系统有了一个大概的理解。接着我们讲讲更深入的应用。 上文讲解的编辑器只是局限于平铺的组件集。而在编辑器中,还会有一种组件是布局容器。它允许其他组件拖拽进入在里面形成自己的一套布局。典型的有分页…

Python基础语法(1)

目录 一、常量和表达式 二、变量和类型 2.1 变量是什么 2.2 变量的语法 2.2.1 定义变量 2.2.2 使用变量 2.3 变量的类型 2.3.1 整数 2.3.2 浮点数(小数) 2.3.3 字符串 2.3.4 布尔 2.3.5 其他 2.4 为什么要有这么多类型 2.4.1 类型决定了数据在内存中占据多大空间…

【STM32 CubeMX】移植u8g2(一次成功)

文章目录 前言一、下载u8g2源文件二、复制和更改文件2.1 复制文件2.2 修改文件u8g2_d_setup文件u8g2_d_memory 三、编写oled.c和oled.h文件3.1 CubeMX配置I2C3.2 编写文件oled.holed.c 四、测试代码main函数测试代码 总结 前言 在本文中,我们将介绍如何在STM32上成…

[C++随想录] 优先级队列

优先级队列 基本使用题目训练 基本使用 priority_queue, 优先级队列, 又叫做双端队列, 头文件也是 <queue> 别看它叫做队列, 其实它是一个 堆 补充一下概念: 大根堆 — — 每一棵树的父节点比它的孩子都大小跟堆 — — 每一棵树的父节点比它的孩子都小 &#x1f447;&…

Golang语法、技巧和窍门

Golang简介 命令式语言静态类型语法标记类似于C&#xff08;但括号较少且没有分号&#xff09;&#xff0c;结构类似Oberon-2编译为本机代码&#xff08;没有JVM&#xff09;没有类&#xff0c;但有带有方法的结构接口没有实现继承。不过有type嵌入。函数是一等公民函数可以返…

设计模式10、外观模式Facade

解释说明&#xff1a;外观模式&#xff08;Facade Pattern&#xff09;又称为门面模式&#xff0c;属于结构型模式 Faade 为子系统中的一组接口提供了一个统一的高层接口&#xff0c;该接口使得子系统更加容易使用 外观&#xff08;Facade)角色&#xff1a;为多个子系统对外提供…

Sql注入(手工注入思路、绕过、防御)

一、Sql注入思路 1、判断注入点 在GET参数、POST参数、以及HTTP头部等&#xff0c;包括Cookie、Referer、XFF(X-Forwarded-for)、UA等地方尝试插入代码、符号或语句&#xff0c;尝试是否存在数据库参数读取行为&#xff0c;以及能否对其参数产生影响&#xff0c;如产生影响则…

信创办公–基于WPS的EXCEL最佳实践系列 (数据整理复制粘贴)

信创办公–基于WPS的EXCEL最佳实践系列 &#xff08;数据整理复制粘贴&#xff09; 目录 应用背景操作步骤1、数据查找与替换2、复制或粘贴数据3、使用自动填充工具4、将数据拆分到多列5、应用数字格式 应用背景 数据的整理复制粘贴等在日常的工作中经常使用。本章内容主要学习…

设计模式 - 享元模式

目录 一. 前言 二. 实现 一. 前言 享元模式&#xff08;Flyweight Pattern&#xff09;是一种结构型设计模式&#xff0c;它主要解决的问题是创建大量相似对象时的内存开销问题。该模式通过共享具有相同状态的对象来减少内存使用量。 享元模式的思想是&#xff1a;当需要创建…

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石③

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石③ 第十九章 驱动程序基石③19.5 定时器19.5.1 内核函数19.5.2 定时器时间单位19.5.3 使用定时器处理按键抖动19.5.4 现场编程、上机19.5.5 深入研究&#xff1a;定时器的内部机制19.5.6 深入研究&#xff1a;找到系统滴答 1…

SpringCloud(一)Eureka、Nacos、Feign、Gateway

文章目录 概述微服务技术对比 Eureka服务远程调用服务提供者和消费者Eureka注册中心搭建注册中心服务注册服务发现Ribbon负载均衡负载均衡策略饥饿加载 NacosNacos与Eureka对比Nacos服务注册Nacos服务分集群存储NacosRule负载均衡服务实例权重设置环境隔离 Nacos配置管理配置热…

ESP32设备驱动-OLED-SSD1306(I2C)显示屏驱动

OLED-SSD1306(I2C)显示屏驱动 1、OLED介绍 OLED显示屏是指有机电激发光二极管(OrganicLight-EmittingDiode,OLED)由于同时具备自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优异之特性,被认为是下一…

C++面试题准备

文章目录 一、线程1.什么是进程&#xff0c;线程&#xff0c;彼此有什么区别?2.多进程、多线程的优缺点3.什么时候用进程&#xff0c;什么时候用线程4.多进程、多线程同步&#xff08;通讯&#xff09;的方法5.父进程、子进程的关系以及区别6.什么是进程上下文、中断上下文7.一…

短期风速预测|LSTM|ELM|批处理(matlab代码)

目录 1 主要内容 LSTM-长短时记忆 ELM-极限学习机 2 部分代码 3 程序结果 4 程序链接 1 主要内容 该程序是预测类的基础性代码&#xff0c;程序对河北某地区的气象数据进行详细统计&#xff0c;程序最终得到pm2.5的预测结果&#xff0c;通过更改数据很容易得到风速预测结…

WSL2安装历程

WLS2安装 1、系统检查 安装WSL2必须运行 Windows 10 版本 2004 及更高版本&#xff08;内部版本 19041 及更高版本&#xff09;或 Windows 11。 查看 Windows 版本及内部版本号&#xff0c;选择 Win R&#xff0c;然后键入winver。 2、家庭版升级企业版 下载HEU_KMS_Activ…