用于自然语言处理的 Python:理解文本数据

一、说明

        Python是一种功能强大的编程语言,在自然语言处理(NLP)领域获得了极大的普及。凭借其丰富的库集,Python 为处理和分析文本数据提供了一个全面的生态系统。在本文中,我们将介绍 Python for NLP 的一些基础知识,重点是理解文本数据和实现代码来执行各种 NLP 任务。

二、用于自然语言处理的 Python:理解文本数据

        文本数据在 NLP 应用程序中起着重要作用,从情感分析到机器翻译。了解文本数据的结构和属性对于有效地处理和从中提取有意义的信息非常重要。

2.1 什么是文本数据?

通常,文本数据是指任何形式的人类可读文本。它可以来自各种媒介,包括书籍、网站、社交媒体帖子或客户评论。文本数据通常表示为字符、单词或标记的序列。

2.2 标记化:将文本分解为单元

        标记化是将文本数据分解为更小、有意义的单元(称为标记)的过程。标记可以是单词、短语,甚至是单个字符。有几个库,如NLTK(自然语言工具包)和spaCy,提供高效的标记化功能。

import nltk
nltk.download('punkt')text = "Python is my favourite programming language."
tokens = nltk.word_tokenize(text)
print(tokens)

2.3 词形还原和词干提取

        词形还原和词干提取是用于规范化文本数据中的单词的技术。词形还原将单词简化为其基本形式或字典形式,称为引理。另一方面,词干分析通过删除前缀和后缀将单词修剪为根形式。这些技术有助于减少单词变化并提高后续NLP任务的效率。

from nltk.stem import WordNetLemmatizer, PorterStemmer
nltk.download('wordnet')lemmatizer = WordNetLemmatizer()
stemmer = PorterStemmer()word = "running"
print("Lemmatized Word:",lemmatizer.lemmatize(word))
print("Stemmed Word:",stemmer.stem(word))

2.4 停用词:滤除噪音

        停用词是语言中通常出现的词,不具有重要意义。停用词的示例包括“the”、“is”和“and”。在NLP中,从文本数据中删除停用词通常是有益的,因为它们会引入噪声并阻碍分析的准确性。像NLTK这样的Python库为不同的语言提供了预定义的停用词列表。

from nltk.corpus import stopwords
nltk.download('stopwords')stop_words = set(stopwords.words('english'))
filtered_tokens = [token for token in tokens if token not in stop_words]
print(filtered_tokens)

2.5 词性 (POS) 标记

        词性标记是为句子中的单词分配语法标签的过程,指示它们的句法角色。这些标签可以是名词、动词、形容词或其他词性。POS 标记对于理解文本数据中单词的上下文和含义至关重要。像NLTK和spaCy这样的库提供了高效的POS标记功能。

nltk.download('averaged_perceptron_tagger')pos_tags = nltk.pos_tag(tokens)
print(pos_tags)

三、不同应用和目的

3.1 命名实体识别 (NER)

        命名实体识别是 NLP 的一个子任务,涉及识别和分类文本数据中的命名实体。命名实体可以是人员、组织、位置或任何其他专有名词的名称。像spaCy这样的Python库为NER提供了预先训练的模型,使得从文本中提取有价值的信息变得更加容易。

import spacynlp = spacy.load('en_core_web_sm')
doc = nlp("Apple is looking at buying U.K. startup for $1 billion")for ent in doc.ents:print(ent.text, ent.label_)

3.2 情绪分析

情感分析是确定文本数据的情绪或情感基调的过程。它涉及将文本分类为正面、负面或中性。Python 提供了各种库,例如 NLTK 和 TextBlob,它们为情感分析提供了预先训练的模型。这些模型可用于分析客户反馈、社交媒体帖子或任何其他文本数据,以深入了解公众舆论。

from textblob import TextBlobtext = "Python is a great programming language."
blob = TextBlob(text)
print(blob.sentiment)

3.3 主题建模

        主题建模是一种用于从文档集合中提取基础主题或主题的技术。它有助于理解文本数据中存在的主要思想或概念。Python的流行库Gensim为主题建模提供了有效的算法,例如潜在狄利克雷分配(LDA)。这些算法可以应用于大型文本语料库,以发现隐藏的模式并生成有意义的摘要。

from gensim import corpora, modelsdocuments = ["Human machine interface for lab abc computer applications","A survey of user opinion of computer system response time","The EPS user interface management system","System and human system engineering testing of EPS"]texts = [doc.split() for doc in documents]
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]lda_model = models.LdaModel(corpus, num_topics=2, id2word=dictionary)
print(lda_model.print_topics())

3.4 文本分类

        文本分类是将文本数据分类为预定义类或类别的过程。它在垃圾邮件过滤、情绪分析、新闻分类和许多其他领域找到了应用。文本分类模型可以使用Python库(如scikit-learn和TensorFlow)进行构建和训练。

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNBX = ["Python is a versatile programming language.", "I love Python.", "Python is great for data analysis."]
y = ["positive", "positive", "positive"]
vectorizer = CountVectorizer()
X_transformed = vectorizer.fit_transform(X)clf = MultinomialNB().fit(X_transformed, y)
print(clf.predict(vectorizer.transform(["Python is awesome!"])))

3.5 词嵌入

词嵌入是单词的密集向量表示,用于捕获它们之间的语义关系。它们广泛用于 NLP 任务,例如单词相似性、文档聚类和语言翻译。Python的库spaCy提供了预先训练的词嵌入模型,如Word2Vec和GloVe。

nlp = spacy.load('en_core_web_md')tokens = nlp("dog cat banana")for token in tokens:print(token.text, token.has_vector, token.vector_norm, token.is_oov)

3.6 语言翻译

        语言翻译涉及将文本从一种语言转换为另一种语言。Python的流行库PyTorch提供了一个强大的机器翻译工具包,称为Fairseq。它利用深度学习模型(如变形金刚)来实现准确流畅的翻译。

        您可以安装以下库

pip install torch fairseq
import torch
from fairseq.models.transformer import TransformerModel# Load the pre-trained translation model
model_name = 'transformer.wmt19.en-de'
model = TransformerModel.from_pretrained(model_name)# Set the model to evaluation mode
model.eval()# Define the source sentence to be translated
source_sentence = "Hello, how are you?"# Translate the source sentence to the target language
translated_sentence = model.translate(source_sentence)# Print the translated sentence
print("Translated Sentence:", translated_sentence)

3.7 文本生成

        文本生成是一项具有挑战性的 NLP 任务,涉及根据给定提示生成连贯且上下文相关的文本。Python的库OpenAI GPT为ChatGPT提供支持,是一个最先进的模型,擅长文本生成。它可以在特定域上进行微调,也可以开箱即用地用于各种创意写作应用程序。

import openai# Set up your OpenAI GPT model
model_name = "text-davinci-003"
openai.api_key = "YOUR_API_KEY_HERE"# Define the prompt for text generation
prompt = "Once upon a time"# Set the maximum number of tokens to generate
max_tokens = 100# Generate text based on the prompt
response = openai.Completion.create(engine=model_name,prompt=prompt,max_tokens=max_tokens
)# Extract the generated text from the API response
generated_text = response.choices[0].text.strip()# Print the generated text
print("Generated Text:")
print(generated_text)

四、用于 NLP 的 Python 库

        Python 为 NLP 提供了广泛的库和框架,使其成为文本数据处理的首选语言。一些流行的库包括:

  • 自然语言工具包 (NLTK)
  • 空间
  • 根西姆
  • TextBlob
  • scikit-learn
  • 张量流
  • PyTorch
  • 费尔塞克
  • OpenAI GPT

        这些库为各种 NLP 任务提供了广泛的功能和预先训练的模型,使开发人员能够专注于手头的特定问题。

五、结论

        Python已经成为自然语言处理(NLP)的流行语言,因为它可以做许多不同的事情,并且有很多库。本文探讨了将 Python 用于 NLP 的基础知识,强调了理解文本数据和利用代码执行各种 NLP 任务的重要性。从词汇分词和词形还原到停止词删除、词性标记、命名实体识别、情感分析、主题建模、文本分类、单词嵌入、语言翻译和文本生成,Python 库(如 NLTK、spaCy、Gensim、TextBlob、scikit-learn、TensorFlow、PyTorch、Fairseq 和 OpenAI GPT)为高效的文本数据处理和分析提供了强大的解决方案和预训练模型。 

纳文·潘迪

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/93324.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SSM - Springboot - MyBatis-Plus 全栈体系(十六)

第三章 MyBatis 三、MyBatis 多表映射 2. 对一映射 2.1 需求说明 根据 ID 查询订单,以及订单关联的用户的信息! 2.2 OrderMapper 接口 public interface OrderMapper {Order selectOrderWithCustomer(Integer orderId); }2.3 OrderMapper.xml 配置…

讲讲项目里的仪表盘编辑器(三)布局组件

布局容器处理 看完前面两章的讲解,我们对仪表盘系统有了一个大概的理解。接着我们讲讲更深入的应用。 上文讲解的编辑器只是局限于平铺的组件集。而在编辑器中,还会有一种组件是布局容器。它允许其他组件拖拽进入在里面形成自己的一套布局。典型的有分页…

Python基础语法(1)

目录 一、常量和表达式 二、变量和类型 2.1 变量是什么 2.2 变量的语法 2.2.1 定义变量 2.2.2 使用变量 2.3 变量的类型 2.3.1 整数 2.3.2 浮点数(小数) 2.3.3 字符串 2.3.4 布尔 2.3.5 其他 2.4 为什么要有这么多类型 2.4.1 类型决定了数据在内存中占据多大空间…

【STM32 CubeMX】移植u8g2(一次成功)

文章目录 前言一、下载u8g2源文件二、复制和更改文件2.1 复制文件2.2 修改文件u8g2_d_setup文件u8g2_d_memory 三、编写oled.c和oled.h文件3.1 CubeMX配置I2C3.2 编写文件oled.holed.c 四、测试代码main函数测试代码 总结 前言 在本文中,我们将介绍如何在STM32上成…

[C++随想录] 优先级队列

优先级队列 基本使用题目训练 基本使用 priority_queue, 优先级队列, 又叫做双端队列, 头文件也是 <queue> 别看它叫做队列, 其实它是一个 堆 补充一下概念: 大根堆 — — 每一棵树的父节点比它的孩子都大小跟堆 — — 每一棵树的父节点比它的孩子都小 &#x1f447;&…

Golang语法、技巧和窍门

Golang简介 命令式语言静态类型语法标记类似于C&#xff08;但括号较少且没有分号&#xff09;&#xff0c;结构类似Oberon-2编译为本机代码&#xff08;没有JVM&#xff09;没有类&#xff0c;但有带有方法的结构接口没有实现继承。不过有type嵌入。函数是一等公民函数可以返…

设计模式10、外观模式Facade

解释说明&#xff1a;外观模式&#xff08;Facade Pattern&#xff09;又称为门面模式&#xff0c;属于结构型模式 Faade 为子系统中的一组接口提供了一个统一的高层接口&#xff0c;该接口使得子系统更加容易使用 外观&#xff08;Facade)角色&#xff1a;为多个子系统对外提供…

Sql注入(手工注入思路、绕过、防御)

一、Sql注入思路 1、判断注入点 在GET参数、POST参数、以及HTTP头部等&#xff0c;包括Cookie、Referer、XFF(X-Forwarded-for)、UA等地方尝试插入代码、符号或语句&#xff0c;尝试是否存在数据库参数读取行为&#xff0c;以及能否对其参数产生影响&#xff0c;如产生影响则…

信创办公–基于WPS的EXCEL最佳实践系列 (数据整理复制粘贴)

信创办公–基于WPS的EXCEL最佳实践系列 &#xff08;数据整理复制粘贴&#xff09; 目录 应用背景操作步骤1、数据查找与替换2、复制或粘贴数据3、使用自动填充工具4、将数据拆分到多列5、应用数字格式 应用背景 数据的整理复制粘贴等在日常的工作中经常使用。本章内容主要学习…

设计模式 - 享元模式

目录 一. 前言 二. 实现 一. 前言 享元模式&#xff08;Flyweight Pattern&#xff09;是一种结构型设计模式&#xff0c;它主要解决的问题是创建大量相似对象时的内存开销问题。该模式通过共享具有相同状态的对象来减少内存使用量。 享元模式的思想是&#xff1a;当需要创建…

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石③

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石③ 第十九章 驱动程序基石③19.5 定时器19.5.1 内核函数19.5.2 定时器时间单位19.5.3 使用定时器处理按键抖动19.5.4 现场编程、上机19.5.5 深入研究&#xff1a;定时器的内部机制19.5.6 深入研究&#xff1a;找到系统滴答 1…

SpringCloud(一)Eureka、Nacos、Feign、Gateway

文章目录 概述微服务技术对比 Eureka服务远程调用服务提供者和消费者Eureka注册中心搭建注册中心服务注册服务发现Ribbon负载均衡负载均衡策略饥饿加载 NacosNacos与Eureka对比Nacos服务注册Nacos服务分集群存储NacosRule负载均衡服务实例权重设置环境隔离 Nacos配置管理配置热…

ESP32设备驱动-OLED-SSD1306(I2C)显示屏驱动

OLED-SSD1306(I2C)显示屏驱动 1、OLED介绍 OLED显示屏是指有机电激发光二极管(OrganicLight-EmittingDiode,OLED)由于同时具备自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优异之特性,被认为是下一…

C++面试题准备

文章目录 一、线程1.什么是进程&#xff0c;线程&#xff0c;彼此有什么区别?2.多进程、多线程的优缺点3.什么时候用进程&#xff0c;什么时候用线程4.多进程、多线程同步&#xff08;通讯&#xff09;的方法5.父进程、子进程的关系以及区别6.什么是进程上下文、中断上下文7.一…

短期风速预测|LSTM|ELM|批处理(matlab代码)

目录 1 主要内容 LSTM-长短时记忆 ELM-极限学习机 2 部分代码 3 程序结果 4 程序链接 1 主要内容 该程序是预测类的基础性代码&#xff0c;程序对河北某地区的气象数据进行详细统计&#xff0c;程序最终得到pm2.5的预测结果&#xff0c;通过更改数据很容易得到风速预测结…

WSL2安装历程

WLS2安装 1、系统检查 安装WSL2必须运行 Windows 10 版本 2004 及更高版本&#xff08;内部版本 19041 及更高版本&#xff09;或 Windows 11。 查看 Windows 版本及内部版本号&#xff0c;选择 Win R&#xff0c;然后键入winver。 2、家庭版升级企业版 下载HEU_KMS_Activ…

Django模板加载与响应

前言 Django 的模板系统将 Python 代码与 HTML 代码解耦&#xff0c;动态地生成 HTML 页面。Django 项目可以配置一个或多个模板引擎&#xff0c;但是通常使用 Django 的模板系统时&#xff0c;应该首先考虑其内置的后端 DTL&#xff08;Django Template Language&#xff0c;D…

【Flutter】Flutter Web 开发 如何从 URL 中获取参数值

【Flutter】Flutter Web 开发 如何从 URL 中获取参数值 文章目录 一、前言二、Flutter Web 中的 URL 处理三、如何从 URL 中获取参数四、实际业务中的用法五、完整示例六、总结 一、前言 大家好&#xff01;我是小雨青年&#xff0c;今天我想和大家分享一下在 Flutter Web 开发…

UGUI交互组件Button

一.初识Button对象 从菜单中创建Button对象&#xff0c;Button的文本由子节点Text对象显示&#xff0c;Button对象的组件除了基础组件外&#xff0c;还有Image用来显示Button常规态的图片&#xff0c;还有Button组件用来控制点击过渡效果和点击事件的响应。 二.Button组件的属…

C#,数值计算——Ranq1的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// Recommended generator for everyday use.The period is 1.8E19. Calling /// conventions same as Ran, above. /// </summary> public class Ranq1 { …