Kolmogorov-Smirnov正态性检验

Kolmogorov-Smirnov正态性检验是一种统计方法,用于检验数据集是否服从正态分布。其基本原理和用途如下:

基本原理:

  1. 假设检验:Kolmogorov-Smirnov检验基于一个假设,即待检验的数据集服从特定的理论正态分布。
  2. 计算累积分布函数:将待检验的数据集按照数值大小排序,然后计算其经验累积分布函数(ECDF)。
  3. 计算理论正态分布的累积分布函数:根据所假设的正态分布的参数(均值和标准差),计算理论正态分布的累积分布函数。
  4. 比较两个累积分布函数:通过比较待检验数据集的ECDF和理论正态分布的累积分布函数,计算出一个统计量,称为K-S统计量(Kolmogorov-Smirnov统计量)。
  5. 判断是否拒绝假设:K-S统计量与一个临界值进行比较,如果K-S统计量大于临界值,则可以拒绝假设,表明数据集不服从正态分布。

用途:

  1. 正态性检验:最常见的用途是检验数据是否服从正态分布。这对于许多统计方法的应用以及假设检验的有效性具有重要意义。
  2. 数据预处理:在一些统计分析中,要求数据服从正态分布,因此可以在分析之前使用K-S检验来验证数据的正态性,并采取适当的数据转换或纠正措施。
  3. 质量控制:在质量控制和生产过程中,可以使用K-S检验来检验观测值是否与预期的正态分布相符,以检测异常或问题。
  4. 金融分析:在金融领域,正态性检验用于分析股价、收益率等金融数据是否服从正态分布,从而影响投资决策。

需要注意的是,Kolmogorov-Smirnov检验对样本量的要求较高,当样本较小时可能不太适用。此外,它对于检测偏离正态分布的具体方式并不敏感,因此在实际应用中,还需要结合其他统计方法和图形分析来综合评估数据的分布情况。

Kolmogorov-Smirnov(K-S)检验对样本量的要求较高,特别是在检验数据是否服从正态分布时。这是因为K-S检验的效力(统计检验的能力)与样本大小有关,较大的样本容易检测到分布的偏差,而较小的样本则可能导致不稳定的结果。

一般来说,当样本容量较小时(通常少于30个数据点),K-S检验可能不够强大,难以明确确定数据的分布情况。在这种情况下,可能需要考虑使用其他正态性检验方法,如Shapiro-Wilk检验或Anderson-Darling检验,它们对小样本的正态性检验效果更好。

总之,确保选择适合样本大小的统计检验方法非常重要,以确保检验的可靠性和准确性。在实际应用中,还应该结合数据的分布特点、领域知识和可视化分析来综合评估数据的正态性。

import numpy as np
from scipy import stats# 生成示例数据,这里使用正态分布生成的数据
np.random.seed(0)
data = np.random.normal(0, 1, 100)  # 均值为0,标准差为1的正态分布数据# 执行K-S检验
ks_statistic, ks_p_value = stats.kstest(data, 'norm')# 打印结果
print("K-S统计量 (D) =", ks_statistic)
print("p值 (p) =", ks_p_value)# 设置显著性水平
alpha = 0.05# 根据p值进行假设检验
if ks_p_value < alpha:print("拒绝原假设:数据不服从正态分布")
else:print("接受原假设:数据服从正态分布")

K-S检验对np.random.normal(均值非0,标准差非1)生成的正态分布数据可能会过于敏感,导致几乎总是拒绝原假设(数据不服从正态分布)。这种情况通常在样本量较大时发生,因为K-S检验趋向于检测到微小的差异。

K-S检验在样本量较大时的敏感性确实是一个已知的问题,尤其是当样本容量远远大于100时,它可能会导致虚假的拒绝。这是因为即使数据来自正态分布,也会因样本量的增加而产生统计上的显著性,从而拒绝原假设。

对于大样本,通常更合适的方法是依赖于直观的图形分析,例如正态概率图(Q-Q图)或直方图,以评估数据的正态性。这些方法可以提供更直观的信息,帮助你判断数据是否符合正态分布,而不受K-S检验的限制。

总之,K-S检验在大样本情况下可能过于敏感,因此在应用时需要谨慎,结合其他检验方法和可视化分析来综合评估数据的分布情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/92391.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【2023研电赛】华东赛区一等奖:电动叉车永磁同步电机MTPA及弱磁控制研究

本文为2023年第十八届中国研究生电子设计华东赛区一等奖竞赛作品分享&#xff0c;参加极术社区的【有奖活动】分享2023研电赛作品扩大影响力&#xff0c;更有丰富电子礼品等你来领&#xff01;&#xff0c;分享2023研电赛作品扩大影响力&#xff0c;更有丰富电子礼品等你来领&a…

Kakfa高效读写数据

1.概述 无论 kafka 作为 MQ 也好&#xff0c;作为存储层也罢&#xff0c;无非就是两个功能&#xff1a;一是 Producer 生产的数据存到 broker&#xff0c;二是 Consumer 从 broker 读取数据。那 Kafka 的快也就体现在读写两个方面了&#xff0c;本文也是从这两个方面去剖析Kafk…

nodejs+vue健身服务应用elementui

第三章 系统分析 10 3.1需求分析 10 3.2可行性分析 10 3.2.1技术可行性&#xff1a;技术背景 10 3.2.2经济可行性 11 3.2.3操作可行性&#xff1a; 11 3.3性能分析 11 3.4系统操作流程 12 3.4.1管理员登录流程 12 3.4.2信息添加流程 12 3.4.3信息删除流程 13 第四章 系统设计与…

数据结构与算法-(7)---栈的应用-(3)表达式转换

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

华为云云耀云服务器 L 实例评测:快速建站的新选择,初创企业和开发者的理想之选

华为云云耀云服务器 L 实例评测&#xff1a;快速建站的新选择&#xff0c;初创企业和开发者的理想之选 文章目录 华为云云耀云服务器 L 实例评测&#xff1a;快速建站的新选择&#xff0c;初创企业和开发者的理想之选导语&#xff1a;摘要&#xff1a; 正文产品概述部署简易性步…

【2023年11月第四版教材】第16章《采购管理》(第二部分)

第16章《采购管理》&#xff08;第二部分&#xff09; 5 过程1-规划采购管理5.1 规划采购管理5.2 采购管理计划★★★5.3 采购策略5.4 采购工作说明书★★★5.5 招标文件★★★ 6 过程2-实施采购6.1 采购文档 7 过程3-控制采购7.1 控制采购★★★ 8 合同管理8.1 合同的分类&…

在Windows11家庭中文版中启用Copilot(预览版)

1、下载ViveTool-vx.x.x.zip 2、解压下载的压缩包ViveTool-vx.x.x.zip 3、复制ViveTool文件夹的路径 4、按下wins&#xff0c;打开搜索 5、输入cmd&#xff0c;并选择“以管理员身份运行” 6、在cmd中输入以下命令&#xff0c;进入ViveTool文件夹&#xff1a; cd ViveTool…

C++数据结构与算法总结

C数据结构与算法 学习算法参考&#xff1a;https://www.hello-algo.com/ Visual Studio快捷键&#xff1a;https://learn.microsoft.com/zh-cn/visualstudio/ide/default-keyboard-shortcuts-in-visual-studio?viewvs-2019 启动时不调试 CtrlF5 设置文档格式 CtrlK、CtrlD …

BI神器Power Query(26)-- 使用PQ实现表格多列转换(2/3)

实例需求&#xff1a;原始表格包含多列属性数据,现在需要将不同属性分列展示在不同的行中&#xff0c;att1、att3、att5为一组&#xff0c;att2、att3、att6为另一组&#xff0c;数据如下所示。 更新表格数据 原始数据表&#xff1a; Col1Col2Att1Att2Att3Att4Att5Att6AAADD…

LitePal for Android

官网 https://github.com/guolindev/LitePal 中文文档 https://blog.csdn.net/guolin_blog/category_9262963.html 简介 An Android library that makes developers use SQLite database extremely easy. LitePal is an open source Android library that allows develope…

接雨水问题

接雨水问题 问题背景 LeetCode 42. 接雨水 接雨水问题是一个经典的计算雨水滞留量的问题&#xff0c;通常使用柱状图来表示不同高度的柱子。在下雨的情况下&#xff0c;柱子之间的凹陷部分能够存储雨水&#xff0c;问题的目标是计算这些柱子所能接收的雨水总量。 相关知识 …

[管理与领导-110]:IT人看清职场中的隐性规则 - 7 - 十二条职场真相

目录 一、不要向同事诉苦。 二、绝不估计公司的发展前景。 三、加薪幅度要互相保密。 四、对于那些看不顺眼的事情&#xff0c;尽可一笑了之&#xff0c;不必与之纠缠。 五、不要轻视任何的事与人。 六、要分清敌友。 七、自以为是的优越感容易招惹上司的嫉恨。 八、不…

windows系统利用powershell查看系统支持那些Windows功能选项

在PowerShell中&#xff0c;我们可以使用Get-WindowsOptionalFeature cmdlet命令来查看Windows功能选项。 打开PowerShell 输入以下命令&#xff1a;将结果输出到1.log Get-WindowsOptionalFeature -Online >1.log 可以看到在指定路径下看到生成了文件 打开查看内容&…

BI神器Power Query(27)-- 使用PQ实现表格多列转换(3/3)

实例需求&#xff1a;原始表格包含多列属性数据,现在需要将不同属性分列展示在不同的行中&#xff0c;att1、att3、att5为一组&#xff0c;att2、att3、att6为另一组&#xff0c;数据如下所示。 更新表格数据 原始数据表&#xff1a; Col1Col2Att1Att2Att3Att4Att5Att6AAADD…

Halcon中灰度直方图的使用与学习

目录 第一步:当前打开窗口的显示灰度图或者mono图片第二步:激活后,我们可以去调整调整右边直方图灰阶值的中蓝色和红色竖线,获取左边图上的灰阶值的范围内的特征显示。第三步:插入代码:总结:它的直观目的,就是查看灰度的分布情况!灰度直方图,是我们经常使用,抓取不同…

算法的时间复杂度分析习题专题

之前写了一篇重点是讲理论&#xff0c;今天重点在于对于题目的分析 题目难度不分先后&#xff0c;有题目来源会直接给出链接或者位置 第一题&#xff1a;消失的数字 题目来源&#xff1a;LeetCode消失的数字 分析 第一种思路分析&#xff1a; 参考代码&#xff1a; #include …

Git与Repo:开源开发的得力工具组合

Git与Repo&#xff1a;开源开发的得力工具组合 1. 引言 开源开发在当今的软件行业中扮演着至关重要的角色。它不仅推动了技术的创新和进步&#xff0c;也促进了开发者之间的合作与共享。随着越来越多的开源项目的涌现&#xff0c;有效的代码管理和版本控制成为了必不可少的工…

Elasticsearch基础篇(三):Elasticsearch7.x的集群部署

Elasticsearch的集群部署 1. Elasticsearch集群架构主节点数据节点客户端节点分片节点间通信集群状态 2. Elasticsearch集群部署2.1 系统配置修改2.1.1 修改文件句柄数和线程数2.1.2 修改虚拟内存2.1.3 关闭交换空间&#xff08;Swap&#xff09; 2.2 下载es数据库并上传到服务…

STM32 定时器介绍--通用、高级定时器

目录 高级定时器 1.功能框图 1-时钟源 2-时基单元 3-输入捕获 4-输出比较 2.输入捕获的应用 3.输出比较的应用 4.初始化结构体 1-时基初始化结构体 2-输出比较结构体 3-PWM信号 周期和占空比的计算--以通用定时器为例 4-输入捕获结构体 5-断路和死区初始化结构体…

实现将一张图片中的目标图片抠出来

要在python中实现将一张图片中的目标图片裁剪出来&#xff0c;需要用到图像处理及机器学习库&#xff0c;以下是一个常用的基本框架 加载图片并使用OpenCV库将其转换为灰度图像 import cv2img cv2.imread(screenshot.jpg) gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)准备模…